We report the study of a huge optical intraday flare on 2021 November 12 at 2 a.m. UT in the blazar OJ 287. In the binary black hole model, it is associated with an impact of the secondary black hole on the accretion disk of the primary. Our multifrequency observing campaign was set up to search for such a signature of the impact based on a prediction made 8 yr earlier. The first
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract I -band results of the flare have already been reported by Kishore et al. (2024). Here we combine these data with our monitoring in theR -band. There is a big change in theR –I spectral index by 1.0 ± 0.1 between the normal background and the flare, suggesting a new component of radiation. The polarization variation during the rise of the flare suggests the same. The limits on the source size place it most reasonably in the jet of the secondary BH. We then ask why we have not seen this phenomenon before. We show that OJ 287 was never before observed with sufficient sensitivity on the night when the flare should have happened according to the binary model. We also study the probability that this flare is just an oversized example of intraday variability using the Krakow data set of intense monitoring between 2015 and 2023. We find that the occurrence of a flare of this size and rapidity is unlikely. In machine-readable Tables 1 and 2, we give the full orbit-linked historical light curve of OJ 287 as well as the dense monitoring sample of Krakow.Free, publicly-accessible full text available June 1, 2025 -
Abstract We study the optical flux and polarization variability of the binary black hole blazar OJ 287 using quasi-simultaneous observations from 2015 to 2023 carried out using telescopes in the USA, Japan, Russia, Crimea, and Bulgaria. This is one of the most extensive quasi-simultaneous optical flux and polarization variability studies of OJ 287. OJ 287 showed large amplitude, ∼3.0 mag flux variability, large changes of ∼37% in degree of polarization, and a large swing of ∼215° in the angle of the electric vector of polarization. During the period of observation, several flares in flux were detected. Those flares are correlated with a rapid increase in the degree of polarization and swings in electric vector of polarization angle. A peculiar behavior of anticorrelation between flux and polarization degree, accompanied by a nearly constant polarization angle, was detected from JD 2,458,156 to JD 2,458,292. We briefly discuss some explanations for the flux and polarization variations observed in OJ 287.
Free, publicly-accessible full text available October 30, 2024 -
ABSTRACT We present the results of our study of cross-correlations between long-term multiband observations of the radio variability of the blazar 3C 279. More than a decade (2008–2022) of radio data were collected at seven different frequencies ranging from 2 to 230 GHz. The multiband radio light curves show variations in flux, with the prominent flare features appearing first at higher-frequency and later in lower-frequency bands. This behaviour is quantified by cross-correlation analysis, which finds that the emission at lower-frequency bands lags that at higher-frequency bands. Lag versus frequency plots are well fit by straight lines with negative slope, typically ∼−30 day GHz−1. We discuss these flux variations in conjunction with the evolution of bright moving knots seen in multiepoch Very Long Baseline Array maps to suggest possible physical changes in the jet that can explain the observational results. Some of the variations are consistent with the predictions of shock models, while others are better explained by a changing Doppler beaming factor as the knot trajectory bends slightly, given a small viewing angle to the jet.
-
ABSTRACT We report the flux and spectral variability of PG 1553 + 113 on intra-night (IDV) to short-term time-scales using BVRI data collected over 91 nights from 28 February to 8 November 2019 employing 10 optical telescopes: three in Bulgaria, two each in India and Serbia, and one each in Greece, Georgia, and Latvia. We monitored the blazar quasi-simultaneously for 16 nights in the V and R bands and 8 nights in the V, R, I bands and examined the light curves (LCs) for intra-day flux and colour variations using two powerful tests: the power-enhanced F-test and the nested ANOVA test. The source was found to be significantly (>99 per cent) variable in 4 nights out of 27 in R-band, 1 out of 16 in V-band, and 1 out of 6 nights in I-band. No temporal variations in the colours were observed on IDV time-scale. During the course of these observations the total variation in R-band was 0.89 mag observed. We also investigated the spectral energy distribution (SED) using B-, V-, R-, and I-band data. We found optical spectral indices in the range of 0.878 ± 0.029 to 1.106 ± 0.065 by fitting a power law (Fν∝ν−α) to these SEDs of PG 1553 + 113. We found that the source follows a bluer-when-brighter trend on IDV time-scales. We discuss possible physical causes of the observed spectral variability.
-
The Cosmic Ray Extremely Distributed Observatory (CREDO) pursues a global research strategy dedicated to the search for correlated cosmic rays, so-called Cosmic Ray Ensembles (CRE). Its general approach to CRE detection does not involve any a priori considerations, and its search strategy encompasses both spatial and temporal correlations, on different scales. Here we search for time clustering of the cosmic ray events collected with a small sea-level extensive air shower array at the University of Adelaide. The array consists of seven one-square-metre scintillators enclosing an area of 10 m × 19 m. It has a threshold energy ~0.1 PeV, and records cosmic ray showers at a rate of ~6 mHz. We have examined event arrival times over a period of over 2.5 years in two equipment configurations (without and with GPS timing), recording ~300 k events and ~100 k events. We determined the event time spacing distributions between individual events and the distributions of time periods which contained specific numbers of multiple events. We find that the overall time distributions are as expected for random events. The distribution which was chosen a priori for particular study was for time periods covering five events (four spacings). Overall, these distributions fit closely with expectation, but there are two outliers of short burst periods in data for each configuration. One of these outliers contains eight events within 48 s. The physical characteristics of the array will be discussed together with the analysis procedure, including a comparison between the observed time distributions and expectation based on randomly arriving events.more » « less
-
null (Ed.)The Cosmic-Ray Extremely Distributed Observatory (CREDO) is a newly formed, global collaboration dedicated to observing and studying cosmic rays (CR) and cosmic-ray ensembles (CRE): groups of at least two CR with a common primary interaction vertex or the same parent particle. The CREDO program embraces testing known CR and CRE scenarios, and preparing to observe unexpected physics, it is also suitable for multi-messenger and multi-mission applications. Perfectly matched to CREDO capabilities, CRE could be formed both within classical models (e.g., as products of photon–photon interactions), and exotic scenarios (e.g., as results of decay of Super-Heavy Dark Matter particles). Their fronts might be significantly extended in space and time, and they might include cosmic rays of energies spanning the whole cosmic-ray energy spectrum, with a footprint composed of at least two extensive air showers with correlated arrival directions and arrival times. As the CRE are predominantly expected to be spread over large areas and, due to the expected wide energy range of the contributing particles, such a CRE detection might only be feasible when using all available cosmic-ray infrastructure collectively, i.e., as a globally extended network of detectors. Thus, with this review article, the CREDO Collaboration invites the astroparticle physics community to actively join or to contribute to the research dedicated to CRE and, in particular, to pool together cosmic-ray data to support specific CRE detection strategies.more » « less