This article examines the consequences and causes of low enrollment of Black patients in clinical trials. We develop a simple model of similarity-based extrapolation that predicts that evidence is more relevant for decision-making by physicians and patients when it is more representative of the group being treated. This generates the key result that the perceived benefit of a medicine for a group depends not only on the average benefit from a trial but also on the share of patients from that group who were enrolled in the trial. In survey experiments, we find that physicians who care for Black patients are more willing to prescribe drugs tested in representative samples, an effect substantial enough to close observed gaps in the prescribing rates of new medicines. Black patients update more on drug efficacy when the sample that the drug is tested on is more representative, reducing Black-white patient gaps in beliefs about whether the drug will work as described. Despite these benefits of representative data, our framework and evidence suggest that those who have benefited more from past medical breakthroughs are less costly to enroll in the present, leading to persistence in who is represented in the evidence base.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
03000010000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Gupta, Harsh (4)
-
Srikant, R. (2)
-
Alsan, Marcella (1)
-
Chen, Jiangong (1)
-
Durvasula, Maya (1)
-
Eryilmaz, Atilla (1)
-
Gandhi, Anshul (1)
-
Javadi, Seyyed Ahmad (1)
-
Li, Bin (1)
-
Manhas, Robin (1)
-
Sahu, Shweta (1)
-
Schwartzstein, Joshua (1)
-
Williams, Heidi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Gupta, Harsh ; Chen, Jiangong ; Li, Bin ; Srikant, R. ( , IEEE INFOCOM)
-
Gupta, Harsh ; Eryilmaz, Atilla ; Srikant, R. ( , infocom)
-
Javadi, Seyyed Ahmad ; Gupta, Harsh ; Manhas, Robin ; Sahu, Shweta ; Gandhi, Anshul ( , 2018 IEEE 38th International Conference on Distributed Computing Systems)