Nanocrystalline supersaturated Al-V alloys produced by high-energy ball milling have been reported to exhibit enhanced corrosion resistance and mechanical properties compared to commercial Al alloys. Corrosion of passive alloys such as Al-V alloy relies on the characteristics of the surface film, which is studied using scanning/transmission electron microscopy and time-of-flight secondary ion mass spectrometry. The effect of microstructure and composition on the surface film has been investigated after different immersion periods (30 min, 2 h, and 1 day) in 0.1 M NaCl. The surface film was complex and composed of oxidized Al and V. The heterogeneous surface film was observed due to the presence of secondary phases and initiation of localized corrosion. The void formation was observed beneath the surface film that would potentially cause pitting corrosion. The generation of nano-sized voids was dependent on grain orientation. Compared to pure Al, the chloride penetration is suppressed in Al-V alloys. The effect of composition and microstructure on surface film formation and attendant corrosion behavior is discussed herein.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Abstract Gamma-ray bursts (GRBs) are flashes of high-energy radiation arising from energetic cosmic explosions. Bursts of long (greater than two seconds) duration are produced by the core-collapse of massive stars 1 , and those of short (less than two seconds) duration by the merger of compact objects, such as two neutron stars 2 . A third class of events with hybrid high-energy properties was identified 3 , but never conclusively linked to a stellar progenitor. The lack of bright supernovae rules out typical core-collapse explosions 4–6 , but their distance scales prevent sensitive searches for direct signatures of a progenitor system. Only tentative evidence for a kilonova has been presented 7,8 . Here we report observations of the exceptionally bright GRB 211211A, which classify it as a hybrid event and constrain its distance scale to only 346 megaparsecs. Our measurements indicate that its lower-energy (from ultraviolet to near-infrared) counterpart is powered by a luminous (approximately 10 42 erg per second) kilonova possibly formed in the ejecta of a compact object merger.Free, publicly-accessible full text available December 8, 2023
-
Abstract Supersaturated solid solutions of Al and corrosion-resistant alloying elements (M: V, Mo, Cr, Ti, Nb), produced by non-equilibrium processing techniques, have been reported to exhibit high corrosion resistance and strength. The corrosion mechanism for such improved corrosion performance has not been well understood. We present a fundamental understanding of the role of V in corrosion of an Al-V alloy, which will provide a theoretical background for developing corrosion-resistant Al alloys. High-energy ball milling of the elemental powder of Al and V produced an in situ consolidated Al-V alloy, which exhibited high solid solubility of V. The corrosion resistance of Al-V alloy was significantly higher than that of pure Al, which was attributed to the (1) enrichment of V at the passive film/substrate interface, (2) incorporation of V into the passive film, and (3) deposition of V on the iron-containing cathodic particles and therefore, retardation of cathodic reaction.
-
Abstract We apply the color–magnitude intercept calibration method (CMAGIC) to the Nearby Supernova Factory SNe Ia spectrophotometric data set. The currently existing CMAGIC parameters are the slope and intercept of a straight line fit to the linear region in the color–magnitude diagram, which occurs over a span of approximately 30 days after maximum brightness. We define a new parameter,
ω XY , the size of the “bump” feature near maximum brightness for arbitrary filtersX andY . We find a significant correlation between the slope of the linear region,β XY , in the CMAGIC diagram andω XY . These results may be used to our advantage, as they are less affected by extinction than parameters defined as a function of time. Additionally,ω XY is computed independently of templates. We find that current empirical templates are successful at reproducing the features described in this work, particularly SALT3, which correctly exhibits the negative correlation between slope and “bump” size seen in our data. In 1D simulations, we show that the correlation between the size of the “bump” feature andβ XY can be understood as a result of chemical mixing due to large-scale Rayleigh–Taylor instabilities. -
Abstract We construct a physically parameterized probabilistic autoencoder (PAE) to learn the intrinsic diversity of Type Ia supernovae (SNe Ia) from a sparse set of spectral time series. The PAE is a two-stage generative model, composed of an autoencoder that is interpreted probabilistically after training using a normalizing flow. We demonstrate that the PAE learns a low-dimensional latent space that captures the nonlinear range of features that exists within the population and can accurately model the spectral evolution of SNe Ia across the full range of wavelength and observation times directly from the data. By introducing a correlation penalty term and multistage training setup alongside our physically parameterized network, we show that intrinsic and extrinsic modes of variability can be separated during training, removing the need for the additional models to perform magnitude standardization. We then use our PAE in a number of downstream tasks on SNe Ia for increasingly precise cosmological analyses, including the automatic detection of SN outliers, the generation of samples consistent with the data distribution, and solving the inverse problem in the presence of noisy and incomplete data to constrain cosmological distance measurements. We find that the optimal number of intrinsic model parameters appears to bemore »
-
Abstract We calibrate spectrophotometric optical spectra of 32 stars commonly used as standard stars, referenced to 14 stars already on the Hubble Space Telescope–based CALSPEC flux system. Observations of CALSPEC and non-CALSPEC stars were obtained with the SuperNova Integral Field Spectrograph over the wavelength range 3300–9400 Å as calibration for the Nearby Supernova Factory cosmology experiment. In total, this analysis used 4289 standard-star spectra taken on photometric nights. As a modern cosmology analysis, all presubmission methodological decisions were made with the flux scale and external comparison results blinded. The large number of spectra per star allows us to treat the wavelength-by-wavelength calibration for all nights simultaneously with a Bayesian hierarchical model, thereby enabling a consistent treatment of the Type Ia supernova cosmology analysis and the calibration on which it critically relies. We determine the typical per-observation repeatability (median 14 mmag for exposures ≳5 s), the Maunakea atmospheric transmission distribution (median dispersion of 7 mmag with uncertainty 1 mmag), and the scatter internal to our CALSPEC reference stars (median of 8 mmag). We also check our standards against literature filter photometry, finding generally good agreement over the full 12 mag range. Overall, the mean of our system is calibrated to themore »
-
Abstract A newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb–Pb collisions at $$\sqrt{s_\text {NN}}$$ s NN = 2.76 TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced inmore »Free, publicly-accessible full text available July 1, 2024