- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Gupta, Shuvankar (3)
-
Ke, Xianglin (3)
-
Emmanuel, Olajumoke Oluwatobiloba (2)
-
Xie, Weiwei (2)
-
Xu, Mingyu (2)
-
Zhang, Pengpeng (2)
-
Bae, Hyeonhu (1)
-
Emmanuel, Olajumoke_Oluwatobiloba (1)
-
Ozbek, Yasemin (1)
-
Tan, Hengxin (1)
-
Wu, Yan (1)
-
Xu, Chunqiang (1)
-
Xu, Xiaofeng (1)
-
Yan, Binghai (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Emmanuel, Olajumoke_Oluwatobiloba; Gupta, Shuvankar; Ke, Xianglin (, Advanced Functional Materials)Abstract The Nernst effect, the generation of a tranverse electric voltage in the presence of longitudinal thermal gradient, has garnered significant attention in the realm of magnetic topological materials due to its superior potential for thermoelectric applications. In this work, the electronic and thermoelectric transport properties of a Kagome magnet ErMn6Sn6are investigated, a compound showing an incommensurate antiferromagnetic phase followed by a ferrimagnetic phase transition upon cooling. It is shown that in the antiferromagnetic phase ErMn6Sn6exhibits both topological Nernst effect and anomalous Nernst effect, analogous to the electric Hall effects, with the Nernst coefficient reaching 1.71 µV K⁻¹ at 300 K and 3 T. This value surpasses that of most of previously reported state‐of‐the‐art canted antiferromagnetic materials and is comparable to recently reported other members of RMn6Sn6(R = rare‐earth, Y, Lu, Sc) compounds, which makes ErMn6Sn6a promising candidate for advancing the development of Nernst effect‐based thermoelectric devices.more » « less
-
Xu, Chunqiang; Gupta, Shuvankar; Tan, Hengxin; Bae, Hyeonhu; Emmanuel, Olajumoke Oluwatobiloba; Xu, Mingyu; Wu, Yan; Xu, Xiaofeng; Zhang, Pengpeng; Xie, Weiwei; et al (, Advanced Functional Materials)Abstract Searching for Kagome magnets with novel magnetic and electronic properties has been attracting significant efforts recently. Here, the magnetic, electronic, and thermoelectric properties of Fe3Ge single crystals with Fe atoms forming a slightly distorted Kagome lattice are reported. It is shown that Fe3Ge exhibits a large anomalous Hall effect and anomalous Nernst effect. The observed anomalous transverse thermoelectric conductivity reaches ≈4.6 A m−1 K−1, which is larger than the conventional ferromagnets and most of the topological ferromagnets reported in literature. The first‐principles calculations suggest that these exceptional transport properties are dominated by the intrinsic mechanism, which highlights the significant contribution of the Berry curvature of massive Dirac gaps in the momentum space. Additionally, a topological Hall resistivity of 0.9 µΩ cm and a topological Nernst coefficient of 1.2 µV K−1are also observed, which are presumably ascribed to the Berry phase associated with the field‐induced non‐zero scalar spin chirality. These features highlight the synergic effects of the Berry phases in both momentum space and real space of Fe3Ge, which render it an excellent candidate for room‐temperature thermoelectric applications based on transverse transport.more » « lessFree, publicly-accessible full text available October 29, 2026
An official website of the United States government
