skip to main content


Search for: All records

Creators/Authors contains: "Guragain, Manan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The electrochemical reduction of nitrate to ammonia is of interest as an energy/environmentally friendly source of ammonia for agriculture and energy applications and as a route toward groundwater purification. We report in situ photoemission data, electrochemical results, and density functional theory calculations that demonstrate vanadium oxide—prepared by ambient exposure of V metal, with a distribution of surface V3+and V4+oxidation states—specifically adsorbs and reduces nitrate to ammonia at pH 3.2 at cathodic potentials. Negligible cathodic activity in the absence of NO3indicates high selectivity with respect to non-nitrate reduction processes. In situ photoemission data indicate that nitrate adsorption and reduction to adsorbed NO2is a key step in the reduction process. NO3RR activity is also observed at pH 7, albeit at a much slower rate. The results indicate that intermediate (non-d0) oxidation states are important for both molecular nitrogen and nitrate reduction to ammonia.

     
    more » « less
  2. Electro- and photocatalytic reduction of N 2 to NH 3 —the nitrogen reduction reaction (NRR)—is an environmentally- and energy-friendly alternative to the Haber-Bosch process for ammonia production. There is a great demand for the development of novel semiconductor-based electrocatalysts with high efficiency and stability for the direct conversion of inert substrates—including N 2 to ammonia—using visible light irradiation under ambient conditions. Herein we report electro-, and photocatalytic NRR with transition metal dichalcogenides (TMDCs), viz MoS 2 and WS 2 . Improved acid treatment of bulk TMDCs yields exfoliated TMDCs (exTMDCs) only a few layers thick with ∼10% S vacancies. Linear scan voltammograms on exMoS 2 and exWS 2 electrodes reveal significant NRR activity for exTMDC-modified electrodes, which is greatly enhanced by visible light illumination. Spectral measurements confirm ammonia as the main reaction product of electrocatalytic and photocatalytic NRR, and the absence of hydrazine byproduct. Femtosecond-resolved transient absorption studies provide direct evidence of interaction between photo-generated excitons/trions with N 2 adsorbed at S vacancies. DFT calculations corroborate N 2 binding to exMoS 2 at S-vacancies, with substantial π -backbonding to activate dinitrogen. Our findings suggest that chemically functionalized exTMDC materials could fulfill the need for highly-desired, inexpensive catalysts for the sustainable production of NH 3 using Sunlight under neutral pH conditions without appreciable competing production of H 2 . 
    more » « less
  3. Abstract

    Using the popular metal‐ligand axial coordination self‐assembly approach, donor‐acceptor conjugates have been constructed using zinc tetrapyrroles (porphyrin (ZnP), phthalocyanine (ZnPc), and naphthalocyanine (ZnNc)) as electron donors and imidazole functionalized tetracyanobutadiene (Im‐TCBD) and cyclohexa‐2,5‐diene‐1,4‐diylidene‐expanded‐tetracyanobutadiene (Im‐DCNQ) as electron acceptors. The newly formed donor‐acceptor conjugates were fully characterized by a suite of physicochemical methods, including absorption and emission, electrochemistry, and computational methods. The measured binding constants for the 1 : 1 complexes were in the order of 104–105 M−1in o‐dichlorobenzene. Free‐energy calculations and the energy level diagrams revealed the high exergonicity for the excited state electron transfer reactions. However, in the case of the ZnNc:Im‐DCNQ complex, owing to the facile oxidation of ZnNc and facile reduction of Im‐DCNQ, slow electron transfer was witnessed in the dark without the aid of light. Systematic transient pump‐probe studies were performed to secure evidence of excited state charge separation and gather their kinetic parameters. The rate of charge separation was as high as 1011 s−1suggesting efficient processes. These findings show that the present self‐assembly approach could be utilized to build donor‐acceptor constructs with powerful electron acceptors, TCBD and DCNQ, to witness ground and excited state charge transfer, fundamental events required in energy harvesting, and building optoelectronic devices.

     
    more » « less