skip to main content

Search for: All records

Creators/Authors contains: "Gurvich, Elena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider a recent plate model obtained as a scaled limit of the three-dimensional Biot system of poro-elasticity. The result is a ‘2.5’-dimensional linear system that couples traditional Euler–Bernoulli plate dynamics to a pressure equation in three dimensions, where diffusion acts only transversely. We allow the permeability function to be time dependent, making the problem non-autonomous and disqualifying much of the standard abstract theory. Weak solutions are defined in the so-called quasi-static case, and the problem is framed abstractly as an implicit, degenerate evolution problem. Utilizing the theory for weak solutions for implicit evolution equations, we obtain existence of solutions. Uniqueness is obtained under additional hypotheses on the regularity of the permeability function. We address the inertial case in an appendix, by way of semigroup theory. The work here provides a baseline theory of weak solutions for the poro-elastic plate and exposits a variety of interesting related models and associated analytical investigations.