skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gustavo Malkomes, Chip Schaff"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite the success of kernel-based nonparametric methods, kernel selection still requires considerable expertise, and is often described as a “black art.” We present a sophisticated method for automatically searching for an appropriate kernel from an infinite space of potential choices. Previous efforts in this direction have focused on traversing a kernel grammar, only examining the data via computation of marginal likelihood. Our proposed search method is based on Bayesian optimization in model space, where we reason about model evidence as a function to be maximized. We explicitly reason about the data distribution and how it induces similarity between potential model choices in terms of the explanations they can offer for observed data. In this light, we construct a novel kernel between models to explain a given dataset. Our method is capable of finding a model that explains a given dataset well without any human assistance, often with fewer computations of model evidence than previous approaches, a claim we demonstrate empirically. 
    more » « less
  2. Despite the success of kernel-based nonparametric methods, kernel selection still requires considerable expertise, and is often described as a “black art.” We present a sophisticated method for automatically searching for an appropriate kernel from an infinite space of potential choices. Previous efforts in this direction have focused on traversing a kernel grammar, only examining the data via computation of marginal likelihood. Our proposed search method is based on Bayesian optimization in model space, where we reason about model evidence as a function to be maximized. We explicitly reason about the data distribution and how it induces similarity between potential model choices in terms of the explanations they can offer for observed data. In this light, we construct a novel kernel between models to explain a given dataset. Our method is capable of finding a model that explains a given dataset well without any human assistance, often with fewer computatio! ns of model evidence than previous approaches, a claim we demonstrate empirically. 
    more » « less