Molecules at a liquid/vapor interface have different organizations and mobilities from those in the bulk. These differences potentially influence the rate of crystal nucleation, but the effect remains imperfectly understood. We have measured the crystal nucleation rates at the surface and in the bulk of amorphous poscaconazole, a rod-like molecule known to have a preferred interfacial orientation. We find that surface nucleation is vastly enhanced over bulk nucleation, by ∼9 orders of magnitude, and selects a different polymorph (II) from bulk nucleation (I). This phenomenon mirrors the recently reported case of D-arabitol and stems from the similarity of anisotropic surface molecular packing to the structure of the surface-nucleating polymorph. In contrast to these two systems, the surface enhancement of nucleation is weaker (though still significant) in acetaminophen and in water and does not select a different polymorph. Together, the systems investigated to date all feature surface enhancement, not suppression, of crystal nucleation, and those showing a polymorphic change feature (1) structural reconstruction at the surface relative to the bulk and (2) existence of a different polymorph that can take advantage of the surface environment to nucleate. These results help predict the effect of a liquid/vapor interface on crystal nucleation and polymorph selection, especially in systems with a large surface/volume ratio, such as atmospheric water and amorphous particles.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Abstract Control over the stereochemistry of excited-state photoreactions remains a significant challenge in organic synthesis. Recently, it has become recognized that the photophysical properties of simple organic substrates can be altered upon coordination to Lewis acid catalysts, and that these changes can be exploited in the design of highly enantioselective catalytic photoreactions. Chromophore activation strategies, wherein simple organic substrates are activated towards photoexcitation upon binding to a Lewis acid catalyst, rank among the most successful asymmetric photoreactions. Herein, we show that chiral Brønsted acids can also catalyze asymmetric excited-state photoreactions by chromophore activation. This principle is demonstrated in the context of a highly enantio- and diastereoselective [2+2] photocycloaddition catalyzed by a chiral phosphoramide organocatalyst. Notably, the cyclobutane products arising from this method feature a
trans -cis stereochemistry that is complementary to other enantioselective catalytic [2+2] photocycloadditions reported to date. -
null (Ed.)Copper(I) iodide complexes are well known for displaying a diverse array of structural features even when only small changes in ligand design are made. This structural diversity is well displayed by five copper(I) iodide compounds reported here with closely related piperidine-2,6-dithione (SNS), isoindoline-1,3-dithione (SNS6), and 6-thioxopiperidin-2-one (SNO) ligands: di-μ-iodido-bis[(acetonitrile-κ N )(6-sulfanylidenepiperidin-2-one-κ S )copper(I)], [Cu 2 I 2 (CH 3 CN) 2 (C 5 H 7 NOS) 2 ] ( I ), bis(acetonitrile-κ N )tetra-μ 3 -iodido-bis(6-sulfanylidenepiperidin-2-one-κ S )- tetrahedro -tetracopper(I), [Cu 4 I 4 (CH 3 CN) 4 (C 5 H 7 NOS) 4 ] ( II ), catena -poly[[(μ-6-sulfanylidenepiperidin-2-one-κ 2 O : S )copper(I)]-μ 3 -iodido], [CuI(C 5 H 7 NOS)] n ( III ), poly[[(piperidine-2,6-dithione-κ S )copper(I)]-μ 3 -iodido], [CuI(C 5 H 7 NS 2 )] n ( IV ), and poly[[(μ-isoindoline-1,3-dithione-κ 2 S : S )copper(I)]-μ 3 -iodido], [CuI(C 8 H 5 NS 2 )] n ( V ). Compounds I and II crystallize as discrete dimeric and tetrameric complexes, whereas III , IV , and V crystallize as polymeric two-dimensional sheets. To the best of our knowledge, compound III is the first instance of an extended hexagonal [Cu 3 I 3 ] structure that is not supported by bridging ligands. Structures I , II , and IV display weak to moderately strong Cu...Cu cuprophilic interactions [Cu...Cu internuclear distances range between 2.5803 (10) and 2.8485 (14) Å]. All structures except III display weak hydrogen-bonding interactions between the N—H of the ligand and the μ 2 and μ 3 -I − atoms. Structure III contains classical N–H...O interactions between the SNO ligands that connect the molecules in a three-dimensional framework. Complex V features π–π stacking interactions between the aryl rings of the SNS6 ligands within the same polymeric sheet. In structure IV , there were three partially occupied solvent molecules of dichloromethane and one partially occupied molecule of acetonitrile present in the asymmetric unit. The SQUEEZE routine [Spek (2015). Acta Cryst . C 71 , 9–18] was used to correct the diffraction data for diffuse scattering effects and to identify the solvent molecules. The given chemical formula and other crystal data do not take into account the solvent molecules.more » « less
-
Abstract Strained rings are increasingly important for the design of pharmaceutical candidates, but cross‐coupling of strained rings remains challenging. An attractive, but underdeveloped, approach to diverse functionalized carbocyclic and heterocyclic frameworks containing all‐carbon quaternary centers is the coupling of abundant strained‐ring carboxylic acids with abundant aryl halides. Herein we disclose the development of a nickel‐catalyzed cross‐electrophile approach that couples a variety of strained ring
N ‐hydroxyphthalimide (NHP) esters, derived from the carboxylic acid in one step, with various aryl and heteroaryl halides under reductive conditions. The chemistry is enabled by the discovery of methods to control NHP ester reactivity, by tuning the solvent or using modified NHP esters, and the discovery thatt‐ BuBpyCamCN, an L2X ligand, avoids problematic side reactions. This method can be run in flow and in 96‐well plates. -
Abstract Strained rings are increasingly important for the design of pharmaceutical candidates, but cross‐coupling of strained rings remains challenging. An attractive, but underdeveloped, approach to diverse functionalized carbocyclic and heterocyclic frameworks containing all‐carbon quaternary centers is the coupling of abundant strained‐ring carboxylic acids with abundant aryl halides. Herein we disclose the development of a nickel‐catalyzed cross‐electrophile approach that couples a variety of strained ring
N ‐hydroxyphthalimide (NHP) esters, derived from the carboxylic acid in one step, with various aryl and heteroaryl halides under reductive conditions. The chemistry is enabled by the discovery of methods to control NHP ester reactivity, by tuning the solvent or using modified NHP esters, and the discovery thatt‐ BuBpyCamCN, an L2X ligand, avoids problematic side reactions. This method can be run in flow and in 96‐well plates.