skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gyakum, John_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The St. Lawrence River Valley experiences a variety of precipitation types (p-types) during the cold season, such as rain, freezing rain, ice pellets, and snow. These varied precipitation types exert considerable impacts on aviation, road transportation, power generation and distribution, and winter recreation and are shaped by diverse multiscale processes that interact with the region’s complex topography. This study utilizes ERA5 reanalysis data, surface cyclone climatology, and hourly station observations from Montréal, Québec, and Burlington, Vermont, during October–April 2000–18 to investigate the spectrum of synoptic-scale weather regimes that induce cold-season precipitation across the St. Lawrence River Valley. In particular,k-means clustering and self-organizing maps (SOMs) are used to classify cyclone tracks passing near the St. Lawrence River Valley, and their accompanying thermodynamic profiles, into a set of event types that include a U.S. East Coast track, a central U.S. track, and two Canadian clipper tracks. Composite analyses are subsequently performed to reveal the synoptic-scale environments and the characteristic p-types that most frequently accompany each event type. Global Ensemble Forecast System version 12 (GEFSv12) reforecasts are then used to examine the relative predictability of cyclone characteristics and the local thermodynamic profile associated with each event type at 0–5-day forecast lead times. The analysis suggests that forecasted cyclones near the St. Lawrence River Valley develop too quickly and are located left-of-track relative to the reanalysis on average, which has implications for forecasts of the local thermodynamic profile and p-type across the region when the temperature is near 0°C. Significance StatementDiverse precipitation types are observed when near-surface temperatures approach 0°C during the cold season, especially across the St. Lawrence River Valley in southern Québec. This study classifies cold-season precipitation events impacting the St. Lawrence River Valley based on the track of storm systems across the region and quantifies the average meteorological characteristics and predictability of each track. Our analysis reveals that forecasted low pressure systems develop too quickly and are left of their observed track 0–5 days prior to an event on average, which has implications for forecasted temperatures and the type of precipitation observed across the region. Our results can inform future operational forecasts of cold-season precipitation events by providing a storm-focused perspective on forecast errors during these impactful events. 
    more » « less