skip to main content

Search for: All records

Creators/Authors contains: "HITCHMAN, Matthew H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The role of differential advection in creating tropopause folds and strong constituent gradients near midlatitude westerly jets is investigated using the University of Wisconsin Non-hydrostatic Modeling System (UWNMS). Dynamical structures are compared with aircraft observations through a fold and subpolar jet (SPJ) during RF04 of the Stratosphere-Troposphere Analyses of Regional Transport (START08) campaign. The observed distribution of water vapor and ozone during RF04 provides evidence of rapid transport in the SPJ, enhancing constituent gradients above relative to below the intrusion. The creation of a tropopause fold by quasi-isentropic differential advection on the upstream side of the trough is described. This fold was created by a southward jet streak in the SPJ, where upper tropospheric air displaced the tropopause eastward in the 6-10 km layer, thereby overlying stratospheric air in the 3-6 km layer. The subsequent superposition of the subtropical and subpolar jets is also shown to result from quasi-isentropic differential advection. The occurrence of low values of ozone, water vapor, and potential vorticity on the equatorward side of the SPJ can be explained by convective transport of low-ozone air from the boundary layer, dehydration in the updraft, and detrainment of inertially-unstable air in the outflow layer. An example of rapid juxtaposition with stratospheric air in the jet core is shown for RF01. The net effect of upstream convective events is suggested as a fundamental cause of the strong constituent gradients observed in midlatitude jets. Idealized diagrams illustrate the role of differential advection in creating tropopause folds and constituent gradient enhancement. 
    more » « less
  2. Abstract

    The joint influence of the stratospheric quasi‐biennial oscillation (QBO) and the El Niño Southern Oscillation (ENSO) on the polar vortex, subtropical westerly jets (STJs), and wave patterns during boreal winter is investigated in 40 years (1979–2018) of monthly mean ERA‐Interim reanalyses. The method of Wallace et al. (1993),<1751:ROTESQ>2.0.CO;2is used to conduct a QBO phase angle sweep. QBO westerly (W) and easterly (E) composites are then segregated by the phase of ENSO. Two pathways are described by which the QBO mean meridional circulation (MMC) influences the northern winter hemisphere. The “stratospheric pathway” modulates stratospheric planetary wave absorption via the Holton‐Tan mechanism. The “tropospheric pathway” modulates the tropical and subtropical upper troposphere and lower stratosphere. QBO MMC anomalies exhibit a checkerboard pattern in temperature and arched structures in zonal wind which extend into midlatitudes, and are stronger on the winter side. During QBO W, the polar vortex and STJs are enhanced. QBO signals in the polar vortex are amplified during La Niña. During El Niño and QBO W, the strongest STJs occur, and a warm pole/wave two pattern is found. During El Niño and QBO E, a trough is found over Eurasia and a ridge over the North Atlantic, in a wave one pattern. El Niño diminishes QBO anomalies in the tropical stratosphere and reduces the poleward extent and amplitude of the QBO MMC, thereby influencing the stratospheric pathway. Effects on the boreal winter hemisphere are attributed to the combined influence of the QBO and ENSO via both pathways.

    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Abstract The stalling and rapid destruction of a potential vorticity (PV) anomaly in the upper troposphere–lower stratosphere (UTLS) by convectively detrained inertially unstable air is described. On 20 August 2018, 10–15 in. (~0.3–0.4 m) of rain fell on western Dane County, Wisconsin, primarily during 0100–0300 UTC 21 August (1900–2100 CDT 20 August), leading to extreme local flooding. Dynamical aspects are investigated using the University of Wisconsin Nonhydrostratic Modeling System (UWNMS). Results are compared with available radiosonde, radar, total rainfall estimates, satellite infrared, and high-resolution European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses. Using ECMWF analyses, the formation of the UTLS PV anomaly is traced to its origin a week earlier in a PV streamer over the west coast of North America. The rainfall maximum over southern Wisconsin was associated with this PV anomaly, whereby convection forming in the warm-upglide sector rotated cyclonically into the region. The quasi-stationarity of this rainfall feature was aided by a broad northeastward surge of inertially unstable convective outflow air into southeastern Wisconsin, which coincided with stalling of the eastward progression of the PV anomaly and its diversion into southern Wisconsin, extending heavy rainfall for several hours. Cessation of rainfall coincided with dilution of the PV maximum in less than an hour (2100–2200 CDT), associated with the arrival of negative PV in the upper troposphere. The region of negative PV was created when convection over Illinois transported air with low wind speed into northeastward shear. This feature is diagnosed using the convective momentum transport hypothesis. 
    more » « less
  5. Abstract

    Observations of temperature and wind velocity in the 30–40-km altitude layer have been sparse since elimination of the standard rocketsonde sounding network in the 1990s. In an effort to extend the vertical range of radiosonde observations into the upper stratosphere, experiments were conducted with a 3-kg balloon at Tsukuba, Japan, on 5 November 2019. Using this relatively inexpensive balloon technology, four radiosondes were launched, with two reaching above 40-km altitude. These profiles were compared with satellite and reanalysis data in the 30–40-km layer, which showed an overall good agreement and an ability of radiosondes to capture shorter vertical-scale variations. The ability to quantify gravity wave parameters from the data is described, with application to wave events detected near 38–40 km. This type of balloon will be deployed extensively in an upcoming intensive observation campaign over the Maritime Continent, which will contribute toward achieving standard radiosonde observations in the 30–40-km altitude range. This system extends the ability to provide information regarding gravity wave and planetary wave activity upward to ∼40 km.

    more » « less
  6. Abstract Key Findings

    • Rossby wave breaking (RWB) is enhanced in the height regions where the zero‐wind line is shifted into the winter hemisphere and where the QBO‐induced meridional circulation is directed toward the winter pole

    • Polar vortex responses differ in terms of the height location of RWB, zonal wave‐number‐dependent disturbances and seasonal development

    • Significant increase in wave‐1 occurs when the QBO is in its easterly phase

    • A cumulative effect of RWB results in enhanced wave forcing of zonal wave‐numbers 2 and 3 during westerly QBO, which manifests in a sign reversal of the Holton–Tan effect in late winter.

    more » « less