skip to main content

Search for: All records

Creators/Authors contains: "Haan, Nathan L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Agriculture is driving biodiversity loss, and future bioenergy cropping systems have the potential to ameliorate or exacerbate these effects. Using a long-term experimental array of 10 bioenergy cropping systems, we quantified diversity of plants, invertebrates, vertebrates, and microbes in each crop. For many taxonomic groups, alternative annual cropping systems provided no biodiversity benefits when compared to corn (the business-as-usual bioenergy crop in the United States), and simple perennial grass–based systems provided only modest gains. In contrast, for most animal groups, richness in plant-diverse perennial systems was much higher than in annual crops or simple perennial systems. Microbial richness patterns were more eclectic, although some groups responded positively to plant diversity. Future agricultural landscapes incorporating plant-diverse perennial bioenergy cropping systems could be of high conservation value. However, increased use of annual crops will continue to have negative effects, and simple perennial grass systems may provide little improvement over annual crops.

    more » « less
  2. null (Ed.)
    Agricultural landscapes in North America have developed through complex interactions of biophysical, socioeconomic and technological forces. While they can be highly productive, these landscapes are increasingly simplified, causing biodiversity loss. As a result, ecosystem services associated with biodiversity are being dismantled. Agricultural landscape structure arises from collective decisions of farmers over long time periods, which are usually not intentionally coordinated beyond the farm scale. Regaining ecosystem services will require active efforts to intentionally redesign landscapes, in part based on ecological evidence about relationships between landscape structure and ecosystem services. Here we focus on services provided by arthropods and how to foster them at landscape scales. We first provide a brief history of how agricultural landscape structure in temperate North America developed and review the landscape-scale ecological drivers underpinning arthropod-based ecosystem services. We then propose ecological and social principles for designing agricultural landscapes, based on the ecological evidence we reviewed and on previous efforts in agricultural landscape design. Finally, we look ahead to discern prospects for putting agricultural landscape design into practice, including ecological, technological and policy opportunities. To reap benefits from arthropod-based services, future agricultural landscapes will need to increase in structural heterogeneity and diversity across multiple dimensions including crop, farmer and consumer diversity. A number of knowledge gaps persist, including how to design landscapes at spatial scales that are relevant to service providers, identifying areas of overlap or conflict between design for ecosystem services and for biodiversity conservation more broadly and navigating the social and political processes needed to implement landscape design. 
    more » « less
  3. null (Ed.)
  4. Monarch butterfly (Danaus plexippus L.) declines in eastern North America have prompted milkweed host plant restoration efforts in non-agricultural grasslands. However, grasslands harbor predator communities that exert high predation pressure on monarch eggs and larvae. While diurnal monarch predators are relatively well known, no studies have investigated the contribution of nocturnal monarch predators. We used video cameras to monitor sentinel monarch eggs and fourth instars on milkweed in southern Michigan to identify predators and determine if nocturnally-active species impose significant predation pressure. We observed ten arthropod taxa consuming monarch eggs and larvae, with 74% of egg predation events occurring nocturnally. Taxa observed attacking monarch eggs included European earwigs (Forficula auricularia L.), tree crickets (Oecanthus sp.), lacewing larvae (Neuroptera), plant bugs (Miridae), small milkweed bugs (Lygaeus kalmii Stal), ants (Formicidae), spiders (Araneae: Salticidae and other spp.), harvestmen (Opiliones), and velvet mites (Trombidiformes: Trombidiidae). Larvae were attacked by ground beetles (Calleida sp.), jumping spiders (Araneae: Salticidae), and spined soldier bugs (Podisus maculiventris Say). Our findings provide important information about monarch predator-prey interactions that could be used to develop strategies to conserve monarchs through reducing predation on early life stages. 
    more » « less