Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)In recent years, several locations in the United States have been experiencing a significant increase in seismicity that has been attributed to oil and gas production. As oil and natural gas production in the United States continues to increase, it is expected that the seismic hazard in these locations will continue to experience a corresponding upsurge. However, many urban structures in these locations are not designed to withstand these increasing levels of seismicity. Accordingly, it is crucial to develop methodologies that can help us quantify the seismic performance of these structures, establish their risk levels, and identify optimal retrofit strategies that will enhance the seismic resilience of these structures. In this context, structural health monitoring (SHM) plays an important role in understanding the seismic performance of structures. SHM can be used, in conjunction with finite element modelling, to provide a realistic representation of the structural performance during a seismic event. In this paper, a framework for seismic risk assessment of reinforced concrete buildings based on SHM is presented. The framework combines nonlinear finite element modeling and SHM data to establish the seismic fragility profile of the structure. The approach is illustrated on a multi- story reinforced concrete structure located on the Oklahoma State University Campus.more » « less
-
Abstract Variations in the water vapor that atmospheric rivers (ARs) carry toward North America within Pacific storms strongly modulates the spatiotemporal distribution of west‐coast precipitation. The “AR Recon” program was established to improve forecasts of landfalling Pacific‐coast ARs and their associated precipitation. Dropsondes are deployed from weather reconnaissance aircraft and pressure sensors have been added to drifting ocean buoys to fill a major gap in standard weather observations, while research is being conducted on the potential for airborne Global Navigation Satellite System (GNSS) radio occultation (ARO) to also contribute to forecast improvement. ARO further expands the spatial coverage of the data collected during AR Recon flights. This study provides the first description of these data, which provide water vapor and temperature information typically as far as 300 km to the side of the aircraft. The first refractivity profiles from European Galileo satellites are provided and their accuracy is evaluated using the dropsondes. It is shown that spatial variations in the refractivity anomaly (difference from the climatological background) are modulated by AR features, including the low‐level jet and tropopause fold, illustrating the potential for RO measurements to represent key AR characteristics. It is demonstrated that assimilation of ARO refractivity profiles can influence the moisture used as initial conditions in a high‐resolution model. While the dropsonde measurements provide precise, in situ wind, temperature and water vapor vertical profiles beneath the aircraft, and the buoys provide surface pressure, ARO provides complementary thermodynamic information aloft in broad areas not otherwise sampled at no additional expendable cost.