skip to main content


Search for: All records

Creators/Authors contains: "Hacker, Bradley R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Titanite U–Pb geochronology is a promising tool to date high-temperature tectonic processes, but the extent to and mechanisms by which recrystallization resets titanite U–Pb dates are poorly understood. This study combines titanite U–Pb dates, trace elements, zoning, and microstructures to directly date deformation and fluid-driven recrystallization along the Coast shear zone (BC, Canada). Twenty titanite grains from a deformed calc-silicate gneiss yield U–Pb dates that range from ~ 75 to 50 Ma. Dates between ~ 75 and 60 Ma represent metamorphic crystallization or inherited detrital cores, whereas ~ 60 and 50 Ma dates reflect localized, grain-scale processes that variably recrystallized the titanite. All the analyzed titanite grains show evidence of fluid-mediated dissolution–reprecipitation, particularly at grain rims, but lack evidence of thermally mediated volume diffusion at a metamorphic temperature of > 700 °C. The younger U–Pb dates are predominantly found in bent portions of grains or fluid-recrystallized rims. These features likely formed during ductile slip and associated fluid flow along the Coast shear zone, although it is unclear whether the dates represent 10 Myr of continuous recrystallization or incomplete resetting of the titanite U–Pb system during a punctuated metamorphic event. Correlations between dates and trace-element concentrations vary, indicating that the effects of dissolution–reprecipitation decoupled U–Pb dates from trace-element concentrations in some grains. These results demonstrate that U–Pb dates from bent titanite lattices and titanite subgrains may directly date crystal-plastic deformation, suggesting that deformation microstructures enhance fluid-mediated recrystallization, and emphasize the complexity of fluid and deformation processes within and among individual grains.

     
    more » « less
  2. Abstract

    Metasediments are common constituents of exhumed lower‐to‐mid‐crustal granulite terranes; understanding their emplacement is significant for the assembly and tectonic evolution of deep continental crust. Here, we report a monazite U‐Th‐Pb petrochronological investigation of the Variscan Ivrea‐Verbano Zone (IVZ) (Val Strona di Omegna section)—an archetypal section of lower crust. Monazite Th‐Pb dates from 11 metapelitic samples decrease with structural depth from 310 to 285 Ma for amphibolite‐facies samples to <290 Ma for granulite‐facies samples. These dates exhibit a time‐resolved variation in monazite trace‐element composition, dominated by the effects of plagioclase and garnet partitioning. Monazite growth under prograde to peak metamorphic conditions began as early as 316 ± 2 Ma. Amphibolite‐facies monazite defines a trend consistent with progressively decreasing garnet modal abundances during decompression and cooling starting at ∼310 Ma; the timing of the onset of exhumation decreases to ∼290 Ma at the base of the amphibolite‐facies portion of the section. Structurally lower, granulite‐facies monazite equilibrated under garnet‐present pressure‐temperature conditions at <290 Ma, with monazite (re)crystallization persisting until at least ∼260 Ma. Combined with existing detrital zircon U‐Pb dates, the monazite data define a <30 Myr duration between deposition of clastic sediments and their burial and heating, potentially to peak amphibolite‐to‐granulite‐facies conditions. Similarly brief timescales for deposition, burial and prograde metamorphism of lower crustal sediments have been reported from continental magmatic arc terranes—supporting the interpretation that the IVZ represents sediments accreted to the base of a Variscan arc magmatic system >5 Myr prior to the onset of regional extension and mafic magmatism.

     
    more » « less
  3. Abstract

    Ophiolite metamorphic soles preserve important records of ophiolite emplacement, but there have been few detailed investigations into their non‐mafic portions. We present new thermobarometric and petrochronologic data from a metasediment and mafic restite in the upper Wadi Tayin sole exposure in the Samail (Oman‐UAE) Ophiolite. Thermodynamic modeling suggests metasedimentary garnet nucleation at ~4 kb, ~550°C and final growth at 7.5 ± 1.2 kbar, 665 ± 32°C, occurring by 93.0 ± 0.5 Ma (Lu‐Hf isochron). Zircon U‐Pb dates of 106.9 ± 2.3 (detrital) and 98.7 ± 1.7 to 94.1 ± 1.6 Ma (metamorphic) bracket the initiation of metamorphism, and monazite U‐Pb dates from ~97–89 Ma suggest a lengthy period of growth or recrystallization. A mafic titanite U‐Pb age of 92.2 ± 1.8 Ma records the earliest possible juxtaposition of high‐ and lower‐grade sole rocks. These and other data suggest that (i) the Wadi Tayin sole preserves an inverted metamorphic, metasomatic, and age gradient,(ii) metasediment metamorphism occurred during, or soon after, crystallization of the overlying ophiolite (≤96.5 Ma); and (iii) sole metasediments define a thermal gradient continuous with hotter, higher‐Pamphibolites. Some of these data conflict with existing models for sole formation, and we propose several hypotheses to explain them. Cooling of the sole below Ar closure by ~92 Ma suggests that strain rapidly partitioned away from the sole, leading to large‐scale, thin‐skinned thrust emplacement of the ophiolite >100 km across the continental margin and the late, cool underthrusting of the continental margin.

     
    more » « less
  4. Abstract

    The Napier Complex in East Antarctica preserves a record of ultrahigh temperature (UHT) metamorphism during the late Archean to early Palaeoproterozoic. While there is little argument that the UHT metamorphic event began atc. 2,580 Ma, the duration over which the rocks resided at UHT has been the subject of intense debate, with estimates for the end of metamorphism ranging from 2,545 to 2,440 Ma—a discrepancy of some 105 Ma. To resolve the time‐scale of UHT metamorphism, a zircon and garnet petrochronological (U–Pb, REE and Ti) data set from a suite of rocks from the Tula Mountains region of the Napier Complex was analysed. Individual concordant populations define zircon U–Pb ages for (a) reset zircon cores of 2,502–2,439 Ma; (b) zircon rims of 2,491–2,454 Ma; and (c) neocrystallized sector‐zoned zircon from 2,492 to 2,443 Ma. Ti‐in‐zircon thermometry places a minimum estimate of 830°C for zircon crystallization, with the majority of concordant populations yielding temperatures >900°C. Zircon–garnet partitioning (DYbvs.DYb/Gd) arrays reveal that the bulk of metamorphic zircon defines an equilibrium relationship with the garnet that forms part of the peak assemblage. Combined with existing geochronological constraints, the new petrochronological data demonstrate that the Napier Complex remained at UHT fromc. 2,585 Ma until at least 2,450 Ma, a residence time of 135 Ma. In the absence of evidence for contemporaneous emplacement of large volumes of igneous rocks, a number of factors likely combined to drive and maintain these extreme temperatures. We propose that theP–Tconditions experienced by the Napier Complex were achieved through a combination of orogenic plateau formation, preconditioning of the crust by a high‐Tmagmatic and UHT metamorphic event atc. 2,850 Ma, inefficient removal of heat‐producing elements during partial melting and slow exhumation. This style of long duration, regional, extreme metamorphism is becoming more commonly identified in the rock record as larger and more robust data sets are collected (e.g. the Eastern Ghats of India and the Gondwanan East African Orogen) and is commonly associated with the amalgamation phases of supercontinents/cratons.

     
    more » « less