skip to main content


Search for: All records

Creators/Authors contains: "Haddad, Nick M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ecological restoration often targets plant community recovery, but restoration success may depend on the recovery of a complex web of biotic interactions to maintain biodiversity and promote ecosystem services. Specifically, management that drives resource availability, such as seeding richness and provenance, may alter species interactions across multiple trophic levels. Using experimentally seeded prairies, we examine three key groups—plants, pollinators and goldenrod crab spiders (Misumena vatia, predators of pollinators)—to understand the effects of species richness and admixture seed sourcing of restoration seed mixtures on multitrophic interactions.

    Working with prairie plants, we experimentally manipulated seed mix richness and the number of seed source regions (single‐source region or admixture seed sourcing). In each experimental prairie, we surveyed floral abundance and richness, pollinator visitation and plant–M. vatiainteractions.

    A high richness seed mix increased floral abundance when seeds were sourced from a single geographic region, and floral abundance strongly increased pollinator visitation,M. vatiaabundance and prey capture. Seeding richness and admixture seed sourcing of the seed mixture did not affect floral species richness, but floral species richness increased pollinator visitation.

    Pollinators interacted with different floral communities across seeding treatments, indicating a shift in visited floral species with restoration practices.

    Synthesis and applications. Long‐term success in prairie restoration requires the restoration of plant–arthropod interactions. We provide evidence that seed mix richness and admixture seed sourcing affect arthropod floral associations, but effective restoration of plant–arthropod interactions should consider total floral resource availability. Incorporating a food web perspective in restoration will strengthen approaches to whole ecosystem restoration.

     
    more » « less
  2. Abstract

    Butterfly abundances are declining globally, with meta‐analysis showing a rate of −2% per year. Agriculture contributes to butterfly decline through habitat loss and degradation. Prairie strips—strips of farmland actively restored to native perennial vegetation—are a conservation practice with the potential to mitigate biodiversity loss, but their impact on butterfly biodiversity is not known.

    Working within a 30‐year‐old experiment that varied land use intensity, from natural areas to croplands (maize–soy–wheat rotation), we introduced prairie strips to less intensely managed crop treatments. Treatments included conservation land, biologically based (organic) row crops with prairie strips, reduced input row crops with prairie strips, no‐till row crops and conventional row crops. We measured butterfly abundance and richness: (1) within prairie strips and (2) across the gradient of land use intensity at the plot level.

    Butterfly abundance was higher within prairie strips than in all other treatments. Across the land use intensity gradient at the plot level, the conservation land treatment had the highest abundance, treatments with prairie strips had intermediate levels and no‐till and conventional treatments had the lowest abundances. Also across entire plots, butterfly richness increased as land use intensity decreased. Treatments with prairie strips, which also had reduced land use intensity, had distinct butterfly communities as they harboured several butterfly species that were not found in other row crop treatments.

    In addition to the known effects of prairie strips on ecosystem services including erosion control and increased water quality, prairie strips can increase biodiversity in multifunctional landscapes.

     
    more » « less
  3. Agricultural landscapes can be managed to protect biodiversity and maintain ecosystem services. One approach to achieve this is to restore native perennial vegetation within croplands. Where rowcrops have displaced prairie, as in the US Midwest, restoration of native perennial vegetation can align with crops in so called “prairie strips.” We tested the effect of prairie strips in addition to other management practices on a variety of taxa and on a suite of ecosystem services. To do so, we worked within a 33-year-old experiment that included treatments that varied methods of agricultural management across a gradient of land use intensity. In the two lowest intensity crop management treatments, we introduced prairie strips that occupied 5% of crop area. We addressed three questions: (1) What are the effects of newly established prairie strips on the spillover of biodiversity and ecosystem services into cropland? (2) How does time since prairie strip establishment affect biodiversity and ecosystem services? (3) What are the tradeoffs and synergies among biodiversity conservation, non-provisioning ecosystem services, and provisioning ecosystem services (crop yield) across a land use intensity gradient (which includes prairie strips)? Within prairie strip treatments, where sampling effort occurred within and at increasing distance from strips, dung beetle abundance, spider abundance and richness, active carbon, decomposition, and pollination decreased with distance from prairie strips, and this effect increased between the first and second year. Across the entire land use intensity gradient, treatments with prairie strips and reduced chemical inputs had higher butterfly abundance, spider abundance, and pollination services. In addition, soil organic carbon, butterfly richness, and spider richness increased with a decrease in land use intensity. Crop yield in one treatment with prairie strips was equal to that of the highest intensity management, even while including the area taken out of production. We found no effects of strips on ant biodiversity and greenhouse gas emissions (N 2 O and CH 4 ). Our results show that, even in early establishment, prairie strips and lower land use intensity can contribute to the conservation of biodiversity and ecosystem services without a disproportionate loss of crop yield. 
    more » « less
  4. Schmidt-Jeffris, Rebecca A (Ed.)
    Abstract Reducing the use of synthetic fertilizers and pesticides can limit negative impacts of agriculture on insects and is a crucial step towards sustainable agriculture. In the United States, organic agriculture has the potential to reduce greenhouse gas emissions, pollutant runoff, and biodiversity loss in the Midwestern Corn Belt—an area extending over 500,000 km2 devoted to intensive production of corn Zea mays (Linnaeus 1753) (Poales: Poaceae), often in rotation with soy Glycine max (Linnaeus 1753) (Fabales: Fabaceae) or wheat Triticum aestivum (Linnaeus 1753) (Poales: Poaceae). Working in 30-yr-long landscape experiments in this region, we tested for impacts of conventional versus organic agriculture on ant communities (Hymenoptera: Formicidae) and potential ecosystem services they provide. Organic fields supported higher ant diversity and a slightly more species-rich ant assemblage than conventionally managed fields but did not otherwise differ in community composition. Despite similar community composition, organic and conventional fields differed in seasonal patterns of ant foraging activity and potential for natural pest suppression. Conventional plots experienced higher overall ant foraging activity, but with the timing skewed towards late in the growing season such that 75% of ant foraging occurred after crop harvest in a wheat year and was therefore unavailable for pest suppression. Organic fields, in contrast, experienced moderate levels of ant foraging activity throughout the growing season, with most foraging occurring during crop growth. Organic fields thus supported twice as much pest suppression potential as conventional fields. Our results highlight the importance of timing in mediating ecosystem services in croplands and emphasize the value of managing landscapes for multiple services rather than yield alone. 
    more » « less
  5. abstract

    Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.

     
    more » « less
  6. Chase, Jonathan (Ed.)
  7. Abstract

    Habitat fragmentation impacts ecosystems worldwide through habitat loss, reduced connectivity, and edge effects. Yet, these landscape factors are often confounded, leaving much to be investigated about their relative effects, especially on species interactions. In a landscape experiment, we investigated the consequences of connectivity and edge effects for seed dispersal by ants. We found that ants dispersed seeds farther in habitat patches connected by corridors, but only in patch centers. We did not see an effect on the total number of seeds moved or the rate ants detected seeds. Furthermore, we did not see any differences in ant community composition across patch types, suggesting that shifts in ant behavior or other factors increased ant seed dispersal in patches connected by corridors. Long‐distance seed dispersal by ants that requires an accumulation of short‐distance dispersal events over generations may be an underappreciated mechanism through which corridors increase plant diversity.

     
    more » « less
  8. Abstract

    Although corridors are frequently regarded as a way to mitigate the negative effects of habitat fragmentation, concerns persist that corridors may facilitate the spread of invasive species to the detriment of native species.

    The invasive fire ant,Solenopsis invicta,has two social forms. The polygyne form has limited dispersal abilities relative to the monogyne form. Our previous work in a large‐scale corridor experiment showed that in landscapes dominated by the polygyne form, fire ant density was higher and native ant species richness was lower in habitat patches connected by corridors than in unconnected patches.

    We expected that these observed corridor effects would be transient, that is, that fire ant density and native ant species richness differences between connected and unconnected patches would diminish over time as fire ants eventually fully established within patches. We tested this prediction by resampling the three landscapes dominated by polygyne fire ants 6 to 11 years after our original study.

    Differences in fire ant density between connected and unconnected habitat patches in these landscapes decreased, as expected. Differences in native ant species richness were variable but lowest in the last 2 years of sampling.

    These findings support our prediction of transient corridor effects on this invasive ant and stress the importance of temporal dynamics in assessing population and community impacts of habitat connectivity.

     
    more » « less
  9. Abstract Fragmentation and scale

    Although habitat loss has well‐known impacts on biodiversity, the effects of habitat fragmentation remain intensely debated. It is often argued that the effects of habitat fragmentation, or the breaking apart of habitat for a given habitat amount, can be understood only at the scale of entire landscapes composed of multiple habitat patches. Yet, fragmentation also impacts the size, isolation and habitat edge for individual patches within landscapes. Addressing the problem of scale on fragmentation effects is crucial for resolving how fragmentation impacts biodiversity.

    Scaling framework

    We build upon scaling concepts in ecology to describe a framework that emphasizes three “dimensions” of scale in habitat fragmentation research: the scales of phenomena (or mechanisms), sampling and analysis. Using this framework, we identify ongoing challenges and provide guidance for advancing the science of fragmentation.

    Implications

    We show that patch‐ and landscape‐scale patterns arising from habitat fragmentation for a given amount of habitat are fundamentally related, leading to interdependencies among expected patterns arising from different scales of phenomena. Aggregation of information when increasing the grain of sampling (e.g., from patch to landscape) creates challenges owing to biases created from the modifiable areal unit problem. Consequently, we recommend that sampling strategies use the finest grain that captures potential underlying mechanisms (e.g., plot or patch). Study designs that can capture phenomena operating at multiple spatial extents offer the most promise for understanding the effects of fragmentation and its underlying mechanisms. By embracing the interrelationships among scales, we expect more rapid advances in our understanding of habitat fragmentation.

     
    more » « less