- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Haddock, S H (2)
-
Damian-Serrano, A (1)
-
Dunn, C W (1)
-
Francis, W R (1)
-
Thuesen, E V (1)
-
Winnikoff, J R (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract Synopsis Siphonophores are free-living predatory colonial hydrozoan cnidarians found in every region of the ocean. Siphonophore tentilla (tentacle side branches) are unique biological structures for prey capture, composed of a complex arrangement of cnidocytes (stinging cells) bearing different types of nematocysts (stinging capsules) and auxiliary structures. Tentilla present an extensive morphological and functional diversity across species. While associations between tentillum form and diet have been reported, the evolutionary history giving rise to this morphological diversity is largely unexplored. Here we examine the evolutionary gains and losses of novel tentillum substructures and nematocyst types on the most recent siphonophore phylogeny. Tentilla have a precisely coordinated high-speed strike mechanism of synchronous unwinding and nematocyst discharge. Here we characterize the kinematic diversity of this prey capture reaction using high-speed video and find relationships with morphological characters. Since tentillum discharge occurs in synchrony across a broad morphological diversity, we evaluate how phenotypic integration is maintaining character correlations across evolutionary time. We found that the tentillum morphospace has low dimensionality, identified instances of heterochrony and morphological convergence, and generated hypotheses on the diets of understudied siphonophore species. Our findings indicate that siphonophore tentilla are phenotypically integrated structures with a complex evolutionary history leading to a phylogenetically-structured diversity of forms that are predictive of kinematic performance and feeding habits.more » « less
-
Winnikoff, J R; Francis, W R; Thuesen, E V; Haddock, S H (, Integrative and Comparative Biology)Abstract Ctenophores, also known as comb jellies, live across extremely broad ranges of temperature and hydrostatic pressure in the ocean. Because various ctenophore lineages adapted independently to similar environmental conditions, Phylum Ctenophora is an ideal system for the study of protein adaptation to extreme environments in a comparative framework. We present such a study here, using a phylogenetically-informed method to compare sequences of four essential metabolic enzymes across gradients of habitat depth and temperature. This method predicts convergent adaptation to these environmental parameters at the amino acid level, providing a novel view of protein adaptation to extreme environments and demonstrating the power and relevance of phylogenetic comparison applied to multi-species transcriptomic datasets from early-diverging metazoa. Across all four enzymes analyzed, 46 amino acid sites were associated with depth-adaptation, 59 with temperature-adaptation, and 56 with both. Sites predicted to be depth- and temperature-adaptive occurred consistently near Rossmann fold cofactor binding motifs and disproportionately in solvent-exposed regions of the protein. These results suggest that the hydrophobic effect and ligand binding may mediate efficient enzyme function at different hydrostatic pressures and temperatures. Using predicted adaptive site maps, such mechanistic hypotheses can now be tested via mutagenesis.more » « less
An official website of the United States government
