Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nucleate boiling is perhaps one of the most efficient cooling methodologies due to its large heat flux with a relatively low superheat. Nucleate boiling often occurs on surfaces oriented at different angles; therefore, understanding the behavior of bubble growth on various surface orientations is of importance. Despite significant advancement, numerous questions remain regarding the fundamentals of bubble growth mechanisms on oriented surfaces, a major source of enhanced heat dissipation. This work aims to accurately measure three-dimensional (3D), space- and time-resolved, local liquid temperature distributions surrounding a growing bubble on oriented surfaces that quantify the heat transfer from the superheated liquid layer during bubble growth. The dual tracer laser-induced fluorescence thermometry technique combined with high-speed imaging captures transient 2D temperature distributions within a 0.3 ºC accuracy at a 30 μm resolution. The results show that the temperature close to the heated surface and bubble interface exhibits an acute transient behavior at the time of bubble departure, and the growing bubble works as a pump to remove heat from the surface with a temperature difference of up to 10 °C during its growth and departure. The experimental results are compared with data available in the literature to validate the accuracy of the technique. It was found that the heat transfer coefficient close to the bubble interface and heater is approximately 1.3 times higher than the heat transfer coefficient in the bulk liquid.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Boiling heat transfer associated with bubble growth is perhaps one of the most efficient cooling methodologies due to its large latent heat during phase change. Despite the significant advancements, numerous questions remain regarding the fundamentals of bubble growth mechanisms, which is a major source of enhanced heat dissipation. This work aims to accurately measure three-dimensional (3D), space and time-resolved, local liquid temperature distributions surrounding a growing bubble to quantify the heat transfer in the superheated liquid layer during bubble growth. The dual tracer laser-induced fluorescence thermometry technique combined with high-speed imaging captures transient 2D temperature distributions, that will render 3D temperature distributions by combining multiple 2D layers, within a 0.3 °C accuracy at a 30 μm resolution. Two fluorescent dyes, fluorescein and sulforhodamine B, were used to measure transient temperatures, by account of their temperature-sensitive emissions. The results show that the temperature close to the heated surface and bubble interface exhibits an acute transient behavior at the time of bubble departure. The growing bubble works as a pump to remove heat from the surface with a peak temperature difference of up to 10 °C during its growth and departure. The experimental results were compared with previously reported studies to validate the accuracy of the technique. It was found that the heat transfer coefficient close to the bubble interface and heater is approximately 1.3 times higher than the heat transfer coefficient in the bulk liquid.more » « less
-
Carbon capture and utilization technology is the research stream dedicated to mitigating the pressing effect of rising atmospheric carbon dioxide (CO2). The present study investigates a potential environmentally conscious solvent to capture and utilize CO2 using waste concrete and seawater under reactor conditions. Although seawater’s CO2 soubility is low due to salinity, waste concrete raises seawater’s pH and alkalinity, acting as a feedstock for CO2 dissolution and offsetting the adverse effects of salinity. To evaluate the performance of the novel natural seawater-concrete solutions for CO2 capture, time-dependent pH changes of solutions exposed to CO2 were measured in a microchannel using fluorescence microscopy. The concentration of dissolved CO2 in the solution was derived from pH change, revealing a 4-fold increase in the total dissolved carbon from 0.034 to 0.13 M and a 57.54% increase in the CO2 dissolution coefficient from 530 to 835 μm2/s in seawater upon concrete addition. Electrolysis further enhanced the CO2 capture capacity of the seawater-concrete solution by increasing the pH, enabling the solid precipitation of carbonate minerals. Raman spectroscopy and scanning electron microscopy showed that electrolysis-driven precipitates are mainly amorphous calcium carbonates, useful building blocks for seashells and coral reefs.more » « less