- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Haggerty, Colby_C (2)
-
Ashall, Chris (1)
-
Bret, Antoine (1)
-
Caprioli, Damiano (1)
-
Cassak, Paul_A (1)
-
Chomiuk, Laura (1)
-
Davis, Zachary (1)
-
Davis, Zachary_K (1)
-
Desai, Dhvanil_D (1)
-
Giai, Carlos_A (1)
-
Gootkin, Keyan (1)
-
Hakobyan, Hayk (1)
-
Shappee, Benjamin_J (1)
-
Shay, Michael_A (1)
-
Tucker, Michael_A (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT The light curves of radioactive transients, such as supernovae and kilonovae, are powered by the decay of radioisotopes, which release high-energy leptons through $$\beta ^+$$ and $$\beta ^-$$ decays. These leptons deposit energy into the expanding ejecta. As the ejecta density decreases during expansion, the plasma becomes collisionless, with particle motion governed by electromagnetic forces. In such environments, strong or turbulent magnetic fields are thought to confine particles, though the origin of these fields and the confinement mechanism have remained unclear. Using fully kinetic particle-in-cell (PIC) simulations, we demonstrate that plasma instabilities can naturally confine high-energy leptons. These leptons generate magnetic fields through plasma streaming instabilities, even in the absence of pre-existing fields. The self-generated magnetic fields slow lepton diffusion, enabling confinement, and transferring energy to thermal electrons and ions. Our results naturally explain the positron trapping inferred from late-time observations of thermonuclear and core-collapse supernovae. Furthermore, they suggest potential implications for electron dynamics in the ejecta of kilonovae. We also estimate synchrotron radio luminosities from positrons for Type Ia supernovae and find that such emission could only be detectable with next-generation radio observatories from a Galactic or local-group supernova in an environment without any circumstellar material.more » « less
-
Giai, Carlos_A; Haggerty, Colby_C; Shay, Michael_A; Cassak, Paul_A; Davis, Zachary_K (, The Astrophysical Journal)Abstract In magnetic reconnection, the ion bulk outflow speed and ion heating have been shown to be set by the available reconnecting magnetic energy, i.e., the energy stored in the reconnecting magnetic field (Br). However, recent simulations, observations, and theoretical works have shown that the released magnetic energy is inhibited by upstream ion plasma betaβi—the relative ion thermal pressure normalized to magnetic pressure based on the reconnecting field—for antiparallel magnetic field configurations. Using kinetic theory and hybrid particle-in-cell simulations, we investigate the effects ofβion guide field reconnection. While previous works have suggested that guide field reconnection is uninfluenced byβi, we demonstrate that the reconnection process is modified and the outflow is reduced for sufficiently large . We develop a theoretical framework that shows that this reduction is consistent with an enhanced exhaust pressure gradient, which reduces the outflow speed as . These results apply to systems in which guide field reconnection is embedded in hot plasmas, such as reconnection at the boundary of eddies in fully developed turbulence like the solar wind or the magnetosheath as well as downstream of shocks such as the heliosheath or the mergers of galaxy clusters.more » « less
An official website of the United States government
