skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Haghnegahdar, Ahmadreza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tracheal stenosis, a severe airway narrowing, poses significant challenges in respiratory function and often necessitates surgical intervention to restore proper airflow. This study aims to demonstrate how computational fluid dynamics (CFD) can provide a non-invasive, efficient, and highly individualized approach to assist surgeons in modeling and planning various surgical strategies for treatment. The CFD-based approach in this study provides significant advantages, including reduced time and cost, and the ability to analyze complex pulmonary airflow characteristics that are difficult to investigate using in vitro and in vivo studies. This research compares three tracheal geometries: a diseased airway with tracheal stenosis and two post-surgical configurations from different surgical plans. Simulations were conducted under four inhalation flow rates, i.e., rest (6 L/min), normal (30 L/min), moderate (60 L/min), and intensive exercise (120 L/min), to evaluate the impact of surgical outcomes on pulmonary airflow dynamics. The upper airway, modeled with a mouth inlet diameter of 20 mm, exhibited average velocities of 0.32, 1.59, 3.18, and 6.37 m/s, corresponding to the respective flow rates. The laminar model was used for the rest flow rate, while the shear stress transport (SST) k-ω model was applied to simulate turbulence with higher inhalation flow rates. The results revealed substantial improvements in flow parameters following surgery. The stenotic geometry exhibited extreme resistance, with pressure drops increasing from 1.96 Pa at rest to 318.9 Pa under intensive flow, and high wall shear stress (WSS) values peaking at 330.8 Pa. Surgical Plan 1 reduced pressure drops by up to 47% and WSS by 97%, while Surgical Plan 2 achieved even greater reductions, with pressure drops lowered by 45% and WSS reduced to 2.54 Pa under high flow rates. Localized flow disturbances, such as uneven airflow distribution among lung lobes, were also alleviated post-surgery. In the diseased airway, the right lower lobe received up to 40% of the total flow, causing severe imbalances. Surgical Plan 2 achieved the most uniform distribution, with all lobes receiving 13%-29% of airflow across all flow rates, ensuring effective oxygenation and minimizing risks of overdistension or under-perfusion. These findings suggest that the CFD-based approach employed in this study can effectively model surgical outcomes, providing surgeons with a fast, detailed, and non-invasive tool for tailoring procedures to individual patient needs. 
    more » « less
    Free, publicly-accessible full text available April 30, 2026