skip to main content

Search for: All records

Creators/Authors contains: "Hagmann, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Finer resolution with greater stability is possible using unique low-power (aW), low-noise (20 dB S/N), microwave harmonics generated within a nanoscale tip-sample junction for feedback control in place of the DC tunneling current. Please see the attached poster to be presented at the Microscopy & Microanalysis-2018 meeting in Baltimore Monday August 6th as Post-deadline poster PDP-18. Applications include true sub-nm resolution in the carrier profiling of semiconductors. This method is especially appropriate for resistive samples where the spreading resistance flattens plots of the tunneling current vs. tip-sample distance with a scanning tunneling microscope.
  2. A mode-locked laser injects pulses of minority carriers into a semiconductor sample. A microwave frequency comb is then generated by the currents formed in the movement of majority carriers native to the semiconductor and the injected minority carriers. These carriers move to cause dielectric relaxation in the sample, which can be used to determine carrier density within the sample. Measurements require close proximity of transmitter and receiver contacts with the sample and may profile a semi-conductor with a resolution of approximately 0.2 nm.
  3. A semiconductor carrier profiling method utilizes a scanning tunneling microscope and shielded probe with an attached spectrum analyzer to measure power loss of a microwave frequency comb generated in a tunneling junction. From this power loss and by utilizing an equivalent circuit or other model, spreading resistance may be determined and carrier density from the spreading resistance. The methodology is non-destructive of the sample and allows scanning across the surface of the sample. By not being destructive, additional analysis methods, like deconvolution, are available for use.
  4. A control methodology for scanning tunneling microscopy is disclosed. Instead of utilizing Integral-based control systems, the methodology utilizes a dual-control algorithm to direct relative advancement of a STM tip towards a sample. A piezo actuator and stepper motor advances an STM tip towards a sample at a given distance until measuring a current greater than or equal to a desired setpoint current. Readings of the contemporaneous step are analyzed to direct the system to change continue or change direction and also determine the size of each step. In simulations where Proportion and/or Integral control methodology was added to the algorithmmore »the stability of the feedback control is decreased. The present methodology accounts for temperature variances in the environment and also appears to clean and protect the tip electrode, prolonging its useful life.« less