skip to main content

Search for: All records

Creators/Authors contains: "Hagstrom, Nathan P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Compressible flow through arrays of circular micro-orifices was experimentally and numerically studied to better understand how the characteristic dimensions of micro-orifices used in macroscale fluidic systems using a plurality of micro-orifices impacts discharge coefficient. The studies were carried out with micro-orifice diameters ranging from 125 μm to 1000 μm, with the number of micro-orifices in an array ranging from 2 to 64, and at gauge inlet pressures ranging from 25 to 600 kPa venting to atmospheric pressure. Results showed `that micro-orifice diameter to thickness aspect ratio and wall profile were significant factors in determining discharge coefficient. The number of micro-orifices in a system was found to have negligible impact on discharge coefficient so long as the micro-orifices were separated by two diameters or more. When this spacing was maintained, two dimensional axisymmetric micro-orifice numerical studies produced discharge coefficients that agreed well with experimental data gathered on three dimensional micro-orifice arrays. The micro-orifice arrays produced discharge coefficients as high as 0.997 using photochemically etched micro-orifices, 0.981 using silicon etched micro-orifices, and 0.831 with drilled micro-orifices. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024