skip to main content

Search for: All records

Creators/Authors contains: "Haiges, Ralf"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Investigations into the reactivity, properties, and applications of osmium(IV) tetraaryl complexes have been hampered by their low yielding syntheses from volatile and toxic OsO4 (typically ≤34%). Here we show that known air-stable M(aryl)4 compounds (M = Os, Ru; aryl = 2-tolyl, 2,5-xylyl) can be prepared in ≤73% yields using new, less hazardous (Oct4N)2[MX6] precursors (M = Os, Ru; X = Cl, Br). This approach also facilitates the preparation of Os(mesityl)4 (Os3) for the first time, a complex comprising bulky 2,6-dimethyl substituted aryl ligands, albeit in low yield (5%). To better understand these yield extremes, we track, by synthesizing two additional new complexes with different 2-substituted σ-aryl ligands, a clear relationship between the yields of Os(aryl)4 and ligand steric bulk. Single-crystal X-ray structures of these compounds indicate that the observed yield trend reflects the ease of accommodating aryl substituents into an open pocket that lies directly opposite each M-aryl coordination site. We perform variable-temperature 1H NMR studies of Os3, utilize a "tetrahedricity" metric to assess geometric distortion in Ru(aryl)4 and Os(aryl)4 materials, and calculate cone angle and percentage buried volume metrics to further illustrate and help quantify -aryl ligand steric properties. Solution cyclic voltammograms of Os(aryl)4 show that the potentials ofmore »their reversible 1−/0 and 0/1+ redox features can be fine-tuned by varying aryl substituents, and that Os3 exhibits an additional 1+/2+ redox event not previously observed in this class of compounds. Taken together, this work helps to advance the potential application of these relatively underexplored organometallic complexes in established and emerging areas of molecular materials science, such as extended molecular frameworks and self-assembled monolayers, where analogous tetraphenylmethane and silane species (M = C, Si) have been frequently targeted.« less
  2. Synthesis and isolation of molecular building blocks of metal–organic frameworks (MOFs) can provide unique opportunities for characterization that would otherwise be inaccessible due to the heterogeneous nature of MOFs. Herein, we report a series of trinuclear cobalt complexes incorporating dithiolene ligands, triphenylene-2,3,6,7,10,11-hexathiolate (THT) (13+), and benzene hexathiolate (BHT) (23+), with 1,1,1,-tris(diphenylphosphinomethyl)ethane (triphos) employed as the capping ligand. Single crystal X-ray analyses of 13+ and 23+ display three five-coordinate cobalt centers bound to the triphos and dithiolene ligands in a distorted square pyramidal geometry. Cyclic voltammetry studies of 13+ and 23+ reveal three redox features associated with the formation of mixed valence states due to the sequential reduction of the redox-active metal centers (Co III/II ). Using this electrochemical data, the comproportionality values were determined for 1 and 2 (log  K c = 1.4 and 1.5 for 1, and 4.7 and 5.8 for 2), suggesting strong resonance-stabilized coupling of the metal centers, with stronger electronic coupling observed for complex 2 compared to that for complex 1. Cyclic voltammetry studies were also performed in solvents of varying polarity, whereupon the difference in the standard potentials (Δ E 1/2 ) for 1 and 2 was found to shift as a function of themore »polarity of the solvent, indicating a negative correlation between the dielectric constant of the electrochemical medium and the stability of the mixed valence species. Spectroelectrochemical studies of in situ generated multi-valent (MV) states of complexes 1 and 2 display characteristic NIR intervalence charge transfer (IVCT) bands, and analysis of the IVCT transitions for complex 2 suggests a weakly coupled class II multi-valent species and relatively large electronic coupling factors (1700 cm −1 for the first multi-valent state of 22+, and 1400 and 4000 cm −1 for the second multi-valent state of 2+). Density functional theory (DFT) calculations indicate a significant deviation in relative energies of the frontier orbitals of complexes 13+, 23+, and 3+ that contrasts those calculated for the analogous trinuclear cobalt dithiolene complexes employing pentamethylcyclopentadienyl (Cp*) as the capping ligand (Co3Cp*3THT and Co3Cp*3BHT, respectively), and may be a result of the cationic nature of complexes 13+, 23+, and 3+.« less
  3. Perovskite chalcogenides are gaining substantial interest as an emerging class of semiconductors for optoelectronic applications. High-quality samples are of vital importance to examine their inherent physical properties. We report the successful crystal growth of the model system, BaZrS 3 and its Ruddlesden–Popper phase Ba 3 Zr 2 S 7 by a flux method. X-ray diffraction analyses showed the space group of Pnma with lattice constants of a = 7.056(3) Å, b = 9.962(4) Å, and c = 6.996(3) Å for BaZrS 3 and P 4 2 / mnm with a = 7.071(2) Å, b = 7.071(2) Å, and c = 25.418(5) Å for Ba 3 Zr 2 S 7 . Rocking curves with full width at half maximum of 0.011° for BaZrS 3 and 0.027° for Ba 3 Zr 2 S 7 were observed. Pole figure analysis, scanning transmission electron microscopy images, and electron diffraction patterns also establish the high quality of the grown crystals. The octahedral tilting in the corner-sharing octahedral network is analyzed by extracting the torsion angles.
  4. Abstract Crystalline solids exhibiting glass-like thermal conductivity have attracted substantial attention both for fundamental interest and applications such as thermoelectrics. In most crystals, the competition of phonon scattering by anharmonic interactions and crystalline imperfections leads to a non-monotonic trend of thermal conductivity with temperature. Defect-free crystals that exhibit the glassy trend of low thermal conductivity with a monotonic increase with temperature are desirable because they are intrinsically thermally insulating while retaining useful properties of perfect crystals. However, this behavior is rare, and its microscopic origin remains unclear. Here, we report the observation of ultralow and glass-like thermal conductivity in a hexagonal perovskite chalcogenide single crystal, BaTiS 3 , despite its highly symmetric and simple primitive cell. Elastic and inelastic scattering measurements reveal the quantum mechanical origin of this unusual trend. A two-level atomic tunneling system exists in a shallow double-well potential of the Ti atom and is of sufficiently high frequency to scatter heat-carrying phonons up to room temperature. While atomic tunneling has been invoked to explain the low-temperature thermal conductivity of solids for decades, our study establishes the presence of sub-THz frequency tunneling systems even in high-quality, electrically insulating single crystals, leading to anomalous transport properties well above cryogenicmore »temperatures.« less
  5. Luminescent complexes of heavy metals such as iridium, platinum, and ruthenium play an important role in photocatalysis and energy conversion applications as well as organic light-emitting diodes (OLEDs). Achieving comparable performance from more–earth-abundant copper requires overcoming the weak spin-orbit coupling of the light metal as well as limiting the high reorganization energies typical in copper(I) [Cu(I)] complexes. Here we report that two-coordinate Cu(I) complexes with redox active ligands in coplanar conformation manifest suppressed nonradiative decay, reduced structural reorganization, and sufficient orbital overlap for efficient charge transfer. We achieve photoluminescence efficiencies >99% and microsecond lifetimes, which lead to an efficient blue-emitting OLED. Photophysical analysis and simulations reveal a temperature-dependent interplay between emissive singlet and triplet charge-transfer states and amide-localized triplet states.