skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hailemichael, Abel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fuzzy logic controllers can handle complex systems by incorporating expert’s knowledge in the absence of formal mathematical models. Further, fuzzy logic controllers can effectively capture and accommodate uncertainties that are inherent in real-world controlled systems. On the other hand, Robot Operating System (ROS) has been widely used for many robotic applications due to its modular structure and efficient message-passing mechanisms for the integration of system’s components. For this reason, Robot Operating System is an ideal tool for developing software stacks for robotic applications. This paper develops a generic and configurable Robot Operating System package for the implementation of fuzzy logic controllers, particularly type-1 and interval type-2, which are based on either Mamdani or Takagi-Sugeno-Kang fuzzy inference mechanisms. This is achieved by employing a systematic object-oriented approach using the Unified Model Language (UML) to implement the fuzzy inference system as a single class that is composed of fuzzifier, inference, and defuzzifier classes. The deployment of the developed Robot Operating System package is demonstrated by implementing an interval type-2 fuzzy logic control of an Unmanned Aerial Vehicle (UAV). 
    more » « less