skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Haimov, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Values of undercatch-corrected liquid-equivalent snowfall rate (S) at a ground site and microwave reflectivity (Z) retrieved using an airborne W-band radar were acquired during overflights. The temperature at the ground site was between −6 and −15 ∘C. At flight level, within clouds containing ice and supercooled liquid water, the temperature was approximately 7 ∘C colder. Additionally, airborne measurements of snow particle imagery were acquired. The images demonstrate that most of the snow particles were rimed, at least at flight level. A relatively small set of S–Z pairs (four) is available from the overflights. Important distinctions between these measurements and those of Pokharel and Vali (2011), who reported S–Z pairs and an S–Z relationship for rimed snow particles, are (1) the fewer S–Z pairs, (2) the method used to acquire S, and (3) the altitude, relative to ground, of the W-band Z retrievals. This analysis corroborates the fact that the S–Z relationship reported in Pokharel and Vali (2011) yields an S – in scenarios with snowfall produced by riming – substantially larger than that derived using an S–Z relationship developed for unrimed snow particles.

     
    more » « less
    Free, publicly-accessible full text available December 22, 2024
  2. Abstract

    High-resolution airborne cloud Doppler radars such as the W-band Wyoming Cloud Radar (WCR) have, since the 1990s, investigated cloud microphysical, kinematic, and precipitation structures down to 30-m resolution. These measurements revolutionized our understanding of fine-scale cloud structure and the scales at which cloud processes occur. Airborne cloud Doppler radars may also resolve cloud turbulent eddy structure directly at 10-m scales. To date, cloud turbulence has been examined as variances and dissipation rates at coarser resolution than individual pulse volumes. The present work advances the potential of near-vertical pulse-pair Doppler spectrum width as a metric for turbulent air motion. Doppler spectrum width has long been used to investigate turbulent motions from ground-based remote sensors. However, complexities of airborne Doppler radar and spectral broadening resulting from platform and hydrometeor motions have limited airborne radar spectrum width measurements to qualitative interpretation only. Here we present the first quantitative validation of spectrum width from an airborne cloud radar. Echoes with signal-to-noise ratio greater than 10 dB yield spectrum width values that strongly correlate with retrieved mean Doppler variance for a range of nonconvective cloud conditions. Further, Doppler spectrum width within turbulent regions of cloud also shows good agreement with in situ eddy dissipation rate (EDR) and gust probe variance. However, the use of pulse-pair estimated spectrum width as a metric for turbulent air motion intensity is only suitable for turbulent air motions more energetic than the magnitude of spectral broadening, estimated to be <0.4 m s−1for the WCR in these cases.

    Significance Statement

    Doppler spectrum width is a widely available airborne radar measurement previously considered too uncertain to attribute to atmospheric turbulence. We validate, for the first time, the response of spectrum width to turbulence at and away from research aircraft flight level and demonstrate that under certain conditions, spectrum width can be used to diagnose atmospheric turbulence down to scales of tens of meters. These high-resolution turbulent air motion intensity measurements may better connect to cloud hydrometeor process and growth response seen in coincident radar reflectivity structures proximate to turbulent eddies.

     
    more » « less
  3. Abstract Properties of frozen hydrometeors in clouds remain difficult to sense remotely. Estimates of number concentration, distribution shape, ice particle density, and ice water content are essential for connecting cloud processes to surface precipitation. Progress has been made with dual-frequency radars, but validation has been difficult because of lack of particle imaging and sizing observations collocated with the radar measurements. Here, data are used from two airborne profiling (up and down) radars, the W-band Wyoming Cloud Radar and the Ka-band Profiling Radar, allowing for Ka–W-band dual-wavelength ratio (DWR) profiles. The aircraft (the University of Wyoming King Air) also carried a suite of in situ cloud and precipitation probes. This arrangement is optimal for relating the “flight-level” DWR (an average from radar gates below and above flight level) to ice particle size distributions measured by in situ optical array probes, as well as bulk properties such as minimum snow particle density and ice water content. This comparison reveals a strong relationship between DWR and the ice particle median-volume diameter. An optimal range of DWR values ensures the highest retrieval confidence, bounded by the radars’ relative calibration and DWR saturation, found here to be about 2.5–7.5 dB. The DWR-defined size distribution shape is used with a Mie scattering model and an experimental mass–diameter relationship to test retrievals of ice particle concentration and ice water content. Comparison with flight-level cloud-probe data indicate good performance, allowing microphysical interpretations for the rest of the vertical radar transects. 
    more » « less
  4. Abstract

    As part of the analysis following the Seeded and Natural Orographic Wintertime Storms (SNOWIE) project, the ice water content (IWC) in ice and mixed-phase clouds is retrieved from airborne Wyoming Cloud Radar (WCR) measurements aboard the University of Wyoming King Air (UWKA), which has a suite of integrated in situ IWC, optical array probes, and remote sensing measurements, and it provides a unique dataset for this algorithm development and evaluation. A sensitivity study with different idealized ice particle habits shows that the retrieved IWC with aggregate ice particle habit agrees the best with the in situ measurement, especially in ice or ice-dominated mixed-phase clouds with a correlation coefficient (rr) of 0.91 and a bias of close to 0. For mixed-phase clouds with ice fraction ratio less than 0.8, the variances of IWC estimates increase (rr = 0.76) and the retrieved mean IWC is larger than in situ IWC by a factor of 2. This is found to be related to the uncertainty of in situ measurements, the large cloud inhomogeneity, and the retrieval assumption uncertainty. The simulated reflectivity Ze and IWC relationships assuming three idealized ice particle habits and measured particle size distributions show that hexagonal columns with the same Ze have a lower IWC than aggregates, whose Ze–IWC relation is more consistent with the observed WCR Ze and in situ IWC relation in those clouds. The 2D stereo probe (2DS) images also indicate that ice particle habit transition occurs in orographic mixed-phase clouds; hence, the retrieved IWC assuming modified gamma particle size distribution (PSD) of aggregate particles tends to have a greater bias in this kind of clouds.

     
    more » « less