skip to main content


Search for: All records

Creators/Authors contains: "Haine, Thomas_W_N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The upper ocean salinity in the eastern subpolar North Atlantic undergoes decadal fluctuations. A large fresh anomaly event occurred during 2012–2016. Using the ECCOv4r4 state estimate, we diagnose and compare mechanisms of this low salinity event with those of the 1990s fresh anomaly event. To avoid issues related to the choice of reference salinity values in the freshwater budget, we perform a salt mass content budget analysis of the eastern subpolar North Atlantic. It shows that the recent low salt content anomaly occurs due to the circulation of anomalous salinity by mean currents entering the eastern subpolar basin from its western boundary via the North Atlantic Current. This is in contrast to the early 1990s, when the dominant mechanism governing the low salt content anomaly was the transport of the mean salinity field by anomalous currents.

     
    more » « less
  2. Abstract

    Southern Ocean surface cooling and Antarctic sea ice expansion from 1979 through 2015 have been linked both to changing atmospheric circulation and melting of Antarctica's grounded ice and ice shelves. However, climate models have largely been unable to reproduce this behavior. Here we examine the contribution of observed wind variability and Antarctic meltwater to Southern Ocean sea surface temperature (SST) and Antarctic sea ice. The free‐running, CMIP6‐class GISS‐E2.1‐G climate model can simulate regional cooling and neutral sea ice trends due to internal variability, but they are unlikely. Constraining the model to observed winds and meltwater fluxes from 1990 through 2021 gives SST variability and trends consistent with observations. Meltwater and winds contribute a similar amount to the SST trend, and winds contribute more to the sea ice trend than meltwater. However, while the constrained model captures much of the observed sea ice variability, it only partially captures the post‐2015 sea ice reduction.

     
    more » « less