Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> A comprehensive study of the local and nonlocal amplitudes contributing to the decayB0→K*0(→K+π−)μ+μ−is performed by analysing the phase-space distribution of the decay products. The analysis is based onppcollision data corresponding to an integrated luminosity of 8.4 fb−1collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient$$ {\mathcal{C}}_9 $$ , responsible for vector dimuon currents, exhibits a 2.1σdeviation from the Standard Model expectation. The Wilson Coefficients$$ {\mathcal{C}}_{10} $$ ,$$ {\mathcal{C}}_9^{\prime } $$ and$$ {\mathcal{C}}_{10}^{\prime } $$ are all in better agreement than$$ {\mathcal{C}}_9 $$ with the Standard Model and the global significance is at the level of 1.5σ. The model used also accounts for nonlocal contributions fromB0→ K*0[τ+τ−→ μ+μ−] rescattering, resulting in the first direct measurement of thebsττvector effective-coupling$$ {\mathcal{C}}_{9\tau } $$ .more » « lessFree, publicly-accessible full text available September 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
A<sc>bstract</sc> A search for Higgs boson pair (HH) production in association with a vector boson V (W or Z boson) is presented. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb−1. Both hadronic and leptonic decays of V bosons are used. The leptons considered are electrons, muons, and neutrinos. The HH production is searched for in the$$ \textrm{b}\overline{\textrm{b}}\textrm{b}\overline{\textrm{b}} $$ decay channel. An observed (expected) upper limit at 95% confidence level of VHH production cross section is set at 294 (124) times the standard model prediction. Constraints are also set on the modifiers of the Higgs boson trilinear self-coupling,kλ, assumingk2V= 1, and vice versa on the coupling of two Higgs bosons with two vector bosons,k2V. The observed (expected) 95% confidence intervals of these coupling modifiers are−37.7 <kλ< 37.2 (−30.1 <kλ< 28.9) and−12.2 <k2V< 13.5 (−7.2 <k2V< 8.9), respectively.more » « lessFree, publicly-accessible full text available October 1, 2025
-
A<sc>bstract</sc> Diboson production in association with jets is studied in the fully leptonic final states, pp → (Z/γ*)(Z/γ*) + jets → 2ℓ2ℓ′ + jets, (ℓ,ℓ′ = e orμ) in proton-proton collisions at a center-of-mass energy of 13 TeV. The data sample corresponds to an integrated luminosity of 138 fb−1collected with the CMS detector at the LHC. Differential distributions and normalized differential cross sections are measured as a function of jet multiplicity, transverse momentumpT, pseudorapidityη, invariant mass and ∆ηof the highest-pTand second-highest-pTjets, and as a function of invariant mass of the four-lepton system for events with various jet multiplicities. These differential cross sections are compared with theoretical predictions that mostly agree with the experimental data. However, in a few regions we observe discrepancies between the predicted and measured values. Further improvement of the predictions is required to describe the ZZ+jets production in the whole phase space.more » « lessFree, publicly-accessible full text available October 1, 2025
-
A search for hidden-charm pentaquark states decaying to a range of and final states, as well as doubly charmed pentaquark states to and , is made using samples of proton-proton collision data corresponding to an integrated luminosity of recorded by the LHCb detector at . Since no significant signals are found, upper limits are set on the pentaquark yields relative to that of the baryon in the decay mode. The known pentaquark states are also investigated, and their signal yields are found to be consistent with zero in all cases. © 2024 CERN, for the LHCb Collaboration2024CERNmore » « lessFree, publicly-accessible full text available August 1, 2025
-
Abstract Using proton–proton collision data corresponding to an integrated luminosity of$$140\hbox { fb}^{-1}$$ collected by the CMS experiment at$$\sqrt{s}= 13\,\text {Te}\hspace{-.08em}\text {V} $$ , the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} $$ decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} $$ decay, is measured to be$$\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} )/\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} ) = [3.38\pm 1.02\pm 0.61\pm 0.03]\%$$ , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in$$\mathcal {B}({{{\uppsi }} ({2\textrm{S}})} \rightarrow {{\text {J}/\uppsi }} {{{\uppi }} ^{{+}}} {{{\uppi }} ^{{-}}} )$$ and$$\mathcal {B}({{{\Xi }} ^{{-}}} \rightarrow {{\Lambda }} {{{\uppi }} ^{{-}}} )$$ .more » « lessFree, publicly-accessible full text available October 1, 2025
-
A<sc>bstract</sc> A search for the fully reconstructed$$ {B}_s^0 $$ → μ+μ−γdecay is performed at the LHCb experiment using proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV corresponding to an integrated luminosity of 5.4 fb−1. No significant signal is found and upper limits on the branching fraction in intervals of the dimuon mass are set$$ {\displaystyle \begin{array}{cc}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[2{m}_{\mu },1.70\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<7.7\times {10}^{-8},&\ m\left({\mu}^{+}{\mu}^{-}\right)\in \left[\textrm{1.70,2.88}\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[3.92,{m}_{B_s^0}\right]\textrm{GeV}/{c}^2,\end{array}} $$ at 95% confidence level. Additionally, upper limits are set on the branching fraction in the [2mμ,1.70] GeV/c2dimuon mass region excluding the contribution from the intermediateϕ(1020) meson, and in the region combining all dimuon-mass intervals.more » « lessFree, publicly-accessible full text available July 1, 2025
-
A search for collective effects inside jets produced in proton-proton collisions is performed via correlation measurements of charged particles using the CMS detector at the CERN LHC. The analysis uses data collected at a center-of-mass energy of , corresponding to an integrated luminosity of . Jets are reconstructed with the anti- algorithm with a distance parameter of 0.8 and are required to have transverse momentum greater than 550 GeV and pseudorapidity . Two-particle correlations among the charged particles within the jets are studied as functions of the particles’ azimuthal angle and pseudorapidity separations ( and ) in a jet coordinate basis, where particles’ , are defined relative to the direction of the jet. The correlation functions are studied in classes of in-jet charged-particle multiplicity up to . Fourier harmonics are extracted from long-range azimuthal correlation functions to characterize azimuthal anisotropy for . For low- jets, the long-range elliptic anisotropic harmonic, , is observed to decrease with . This trend is well described by Monte Carlo event generators. However, a rising trend for emerges at , hinting at a possible onset of collective behavior, which is not reproduced by the models tested. This observation yields new insights into the dynamics of jet evolution in the vacuum. © 2024 CERN, for the CMS Collaboration2024CERNmore » « lessFree, publicly-accessible full text available September 1, 2025