Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, we study the online multidimensional knapsack problem (called OMdKP) in which there is a knapsack whose capacity is represented in m dimensions, each dimension could have a different capacity. Then, n items with different scalar profit values and m-dimensional weights arrive in an online manner and the goal is to admit or decline items upon their arrival such that the total profit obtained by admitted items is maximized and the capacity of knapsack across all dimensions is respected. This is a natural generalization of the classic single-dimension knapsack problem with several relevant applications such as in virtualmore »Free, publicly-accessible full text available June 20, 2023
-
In this paper, we study the online multidimensional knapsack problem (called OMdKP) in which there is a knapsack whose capacity is represented in m dimensions, each dimension could have a different capacity. Then, n items with different scalar profit values and m-dimensional weights arrive in an online manner and the goal is to admit or decline items upon their arrival such that the total profit obtained by admitted items is maximized and the capacity of knapsack across all dimensions is respected. This is a natural generalization of the classic single-dimension knapsack problem and finds several relevant applications such as inmore »Free, publicly-accessible full text available December 14, 2022
-
This paper studies the online energy scheduling problem in a hybrid model where the cost of energy is proportional to both the volume and peak usage, and where energy can be either locally generated or drawn from the grid. Inspired by recent advances in online algorithms with Machine Learned (ML) advice, we develop parameterized deterministic and randomized algorithms for this problem such that the level of reliance on the advice can be adjusted by a trust parameter. We then analyze the performance of the proposed algorithms using two performance metrics: textit{robustness} that measures the competitive ratio as a function ofmore »
-
While ride-sharing has emerged as a popular form of transportation in urban areas due to its on-demand convenience, it has become a major contributor to carbon emissions, with recent studies suggesting it is 47% more carbon-intensive than personal car trips. In this paper, we examine the feasibility, costs, and carbon benefits of using electric bike-sharing---a low carbon form of ride-sharing---as a potential substitute for shorter ride-sharing trips, with the overall goal of greening the ride-sharing ecosystem. Using public datasets from New York City, our analysis shows that nearly half of the taxi and rideshare trips in New York are shortsmore »
-
This paper studies adversarial bandits with corruptions. In the basic adversarial bandit setting, the reward of arms is predetermined by an adversary who is oblivious to the learner’s policy. In this paper, we consider an extended setting in which an attacker sits in-between the environment and the learner, and is endowed with a limited budget to corrupt the reward of the selected arm. We have two main results. First, we derive a lower bound on the regret of any bandit algorithm that is aware of the budget of the attacker. Also, for budget-agnostic algorithms, we characterize an impossibility result demonstratingmore »
-
Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance onmore »
-
Electricity bill constitutes a significant portion of operational costs for large scale data centers. Empowering data centers with on-site storages can reduce the electricity bill by shaping the energy procurement from deregulated electricity markets with real-time price fluctuations. This work focuses on designing energy procurement and storage management strategies to minimize the electricity bill of storage-assisted data centers. Designing such strategies is challenging since the net energy demand of the data center and electricity market prices are not known in advance, and the underlying problem is coupled over time due to evolution of the storage level. Using competitive ratio asmore »