skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Halabi, Keren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Premise of research. Polyploidy, a major evolutionary process in flowering plants, is expected to 19 impact floral traits which can have cascading effects on pollination interactions, but this may 20 depend on selfing propensity. In a novel use of herbarium specimens, we assessed the effects of 21 polyploidy and mating system on floral traits and the pollination niche of 40 Brassicaceae 22 species. 23 Methodology. We combined data on mating system (self-compatible or self-incompatible) with 24 inferred ploidy level (polyploid or diploid) and use phylogenetically controlled analyses to 25 investigate their influence on floral traits (size and shape) and the degree of pollination 26 generalism based on the frequency and the richness of heterospecific pollen morphospecies 27 captured by stigmas. 28 Pivotal Results. Flower size (but not shape) depended on the interaction between ploidy and 29 mating system. Self-incompatible polyploid species had larger flowers than self-incompatible 30 diploids but there was no difference for self-compatible species. The breadth of pollination niche 31 (degree of generalism) was not affected by ploidy but rather strongly by mating system only. 32 Self-incompatible species had more stigmas with heterospecific pollen and higher heterospecific 33 pollen morphospecies richness per stigma than self-compatible species, regardless of their 34 ploidy. 35 Conclusions. Our results demonstrate that mating system moderated the influence of ploidy on 36 morphological features associated with pollination generalism but that response in terms of 37 heterospecific pollen captured as a proxy of pollination generalism was more variable. 
    more » « less