We present details on a new measurement of the muon magnetic anomaly,. The result is based on positive muon data taken at Fermilab’s Muon Campus during the 2019 and 2020 accelerator runs. The measurement usespolarized muons stored in a 7.1-m-radius storage ring with a 1.45 T uniform magnetic field. The value ofis determined from the measured difference between the muon spin precession frequency and its cyclotron frequency. This difference is normalized to the strength of the magnetic field, measured using nuclear magnetic resonance. The ratio is then corrected for small contributions from beam motion, beam dispersion, and transient magnetic fields. We measure(0.21 ppm). This is the world’s most precise measurement of this quantity and represents a factor of 2.2 improvement over our previous result based on the 2018 dataset. In combination, the two datasets yield(0.20 ppm). Combining this with the measurements from Brookhaven National Laboratory for both positive and negative muons, the new world average is(0.19 ppm).
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Published by the American Physical Society 2024 Free, publicly-accessible full text available August 1, 2025 -
We present a new measurement of the positive muon magnetic anomaly, 𝑎𝜇≡(𝑔𝜇−2)/2, from the Fermilab Muon 𝑔−2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, 𝜔𝑝, and of the anomalous precession frequency corrected for beam dynamics effects, 𝜔𝑎. From the ratio 𝜔𝑎/𝜔𝑝, together with precisely determined external parameters, we determine 𝑎𝜇=116 592 057(25)×10−11 (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain 𝑎𝜇(FNAL)=116 592 055(24)×10−11 (0.20 ppm). The new experimental world average is 𝑎𝜇(exp)=116 592 059(22)×10−11 (0.19 ppm), which represents a factor of 2 improvement in precision.more » « less
-
A search for hidden-charm pentaquark states decaying to a range ofandfinal states, as well as doubly charmed pentaquark states toand, is made using samples of proton-proton collision data corresponding to an integrated luminosity ofrecorded by the LHCb detector at. Since no significant signals are found, upper limits are set on the pentaquark yields relative to that of thebaryon in thedecay mode. The known pentaquark states are also investigated, and their signal yields are found to be consistent with zero in all cases.
© 2024 CERN, for the LHCb Collaboration 2024 CERN Free, publicly-accessible full text available August 1, 2025 -
The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software.more » « lessFree, publicly-accessible full text available May 1, 2025
-
The production of 𝜂 and 𝜂′ mesons is studied in proton-proton and proton-lead collisions collected with the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.02 and 13TeV and proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16TeV. The studies are performed in center-of-mass (c.m.) rapidity regions 2.5<𝑦c.m.<3.5 (forward rapidity) and −4.0<𝑦c.m.<−3.0 (backward rapidity) defined relative to the proton beam direction. The 𝜂 and 𝜂′ production cross sections are measured differentially as a function of transverse momentum for 1.5<𝑝T<10GeV and 3<𝑝T<10GeV, respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for 𝜂 and 𝜂′ mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of 𝜂 mesons are also used to calculate 𝜂/𝜋0 cross-section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as 𝜂 and 𝜂′ meson fragmentation.more » « less
-
Garisto, R (Ed.)The ratios of branching fractions R(D*)= B(B0 --> D*+tau- nu(bar))/ B(B0--> D*+mu- nu(bar)) and R(D)= B(B0 --> D0tau- nu(bar))/ B(B0 --> D0mu- nu(bar)) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1 of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ− → μ−ντν¯μ. The measured values are R*D*)= 0.281+/- 0.018+/- 0.024 and R(D0)=0.441+/- 0.060+/- 0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ= −0.43. The results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the standard modelmore » « less