Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Citizen science yields increased scientific capacity in exchange for science literacy and promises of a more responsive science to society’s needs. Yet, citizen science projects are criticized for producing few scientific outputs and having exploitative relationships with the citizens who participate. In the eagerness to capture new data, scientists can fail to see the value of citizen scientists’ expertise beyond data generation and can forget to close the loop with outputs that benefit the public interest. Citizen scientists are experts in their local environments who, when asked, can improve scientific processes and products. To the degree that citizen scientists are relegated to data collection, we shortchange opportunities to advance science. Rather than merely critique, we present an evidence-based engagement approach for listening to citizen scientist participants and incorporating their input into science processes and products that can be retrofitted onto existing citizen science projects or integrated from a project’s inception. We offer this adaptable blueprint in four steps and illustrate this approach via a crowdsourced hydrology project on the Boyne River, USA. We show how engaging voices of citizen scientists at key points in the project improves both the products of science (a real-time ecohydrological model) and the process of conducting the science (adaptations to help improve data collection). Distinct from outreach or education, considering citizen scientists as an equally interesting site of inquiry can improve the practice and outputs of science.more » « less
-
Abstract Streamflow droughts are receiving increased attention worldwide due to their impact on the environment and economy. One region of concern is the Midwestern United States, whose agricultural productivity depends on subsurface pipes known as tile drains to improve trafficability and soil conditions for crop growth. Tile drains accomplish this by rapidly transporting surplus soil moisture and shallow groundwater from fields, resulting in reduced watershed storage. However, no work has previously examined the connection between tile drainage and streamflow drought. Here, we pose the question: does the extent of watershed-level tile drainage lead to an increased susceptibly and magnitude of streamflow droughts? To answer this, we use daily streamflow data for 122 watersheds throughout the Midwestern United States to quantify streamflow drought duration, frequency, and intensity. Using spatial multiple regression models, we find that agricultural tile drainage generates statistically significant (p< 0.05) increases in streamflow drought duration and intensity while significantly reducing drought frequency. The magnitude of the effect of tile drainage on streamflow drought characteristics is similar to that of water table depth and precipitation seasonality, both of which are known to influence streamflow droughts. Furthermore, projected changes in regional precipitation characteristics will likely drive the installation of additional tile drainage. We find that for each 10% increase in tile-drained watershed area, streamflow drought duration and intensity increase by 0.03 d and 12%, respectively, while frequency decreases by 0.10 events/year. Such increases in tile drainage may lead to more severe streamflow droughts and have a detrimental effect on the socio-environmental usage of streams throughout the Midwest.more » « less
-
Abstract Citizen science is personal. Participation is contingent on the citizens’ connection to a topic or to interpersonal relationships meaningful to them. But from the peer-reviewed literature, scientists appear to have an acquisitive data-centered relationship with citizens. This has spurred ethical and pragmatic criticisms of extractive relationships with citizen scientists. We suggest five practical steps to shift citizen-science research from extractive to relational, reorienting the research process and providing reciprocal benefits to researchers and citizen scientists. By virtue of their interests and experience within their local environments, citizen scientists have expertise that, if engaged, can improve research methods and product design decisions. To boost the value of scientific outputs to society and participants, citizen-science research teams should rethink how they engage and value volunteers.more » « less