skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hall, Deborah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Purpose: Previous research points to a complex relation between social media use and mental health, with open questions remaining with respect to mediation pathways and potential sociodemographic moderators. The present research investigated the extent to which experiences of cyberbullying victimization mediate the link between greater social media use and poorer mental health in adults and whether such indirect effects are moderated by gender or age. Participants and methods: As part of a larger study, US adults (N = 502) completed an online survey that included measures of degree of social media use, cyberbullying victimization, depression, anxiety, substance use, and sociodemographic characteristics including gender and age. Results: A series of moderated mediation models revealed a robust indirect effect of cyberbullying victimization on the relation between degree of social media use and mental health, such that greater social media use was associated with higher levels of cyberbullying victimization and greater cyberbullying victimization was associated with increased depression, anxiety, and likelihood of substance use. There was no evidence that the mediation effects varied between men and women. Age did, however, moderate the mediation effects for anxiety and likelihood of substance use, with stronger mediation effects emerging for younger compared to older adults. Conclusion: Our findings underscore the importance of empirical investigations that shed a more nuanced light on the complex relation between social media and mental health. 
    more » « less
    Free, publicly-accessible full text available November 22, 2025
  2. Due to the increased prevalence of cyberbullying and the detrimental impact it can have on adolescents, there is a critical need for tools to help combat cyberbullying. This paper introduces the ActionPoint app, a mobile application based on empirical work highlighting the importance of strong parent-teen relationships for reducing cyberbullying risk. The app is designed to help families improve their communication skills, set healthy boundaries for social media use, identify instances of cyberbullying and cyberbullying risk, and, ultimately, decrease the negative outcomes associated with cyberbullying. The app guides parents and teens through a series of interactive modules that engage them in evidence-based activities that promote better understanding of cyberbullying risks and healthy online behaviors. In this paper, we describe the app design, the psychology research supporting the design of each module, the architecture and implementation details, and crucial paths to extend the app. 
    more » « less
    Free, publicly-accessible full text available May 14, 2025
  3. Cyberbullying has become a prominent risk for youth and an increasing concern for parents. To help parents reduce their child’s cyberbullying risk, anti-bullying apps (ABAs)—mobile applications for identifying and preventing instances of cyberbullying—have been developed in recent years. Given that ABAs are an emerging technology, limited research has been conducted to understand the factors predicting parents’ intentions to use them. Drawing on three interdisciplinary theoretical frameworks, a sample of parents in the U.S. recruited through Amazon Mechanical Turk completed an online survey to assess parents’ knowledge of, attitudes about, and intentions to use ABAs. Participants also rated the importance of a range of ABA functions and provided information about their child’s social media use and bullying history. A series of path analyses revealed that the importance parents placed on an app’s ability to provide information about their child’s cyberbullying risk predicted more positive attitudes toward ABAs and greater perceived usefulness of them. Stronger intentions to use ABAs were predicted by greater cyberbullying concern, greater importance of social recommendations, greater perceived usefulness, more positive attitudes toward the apps, and lower ratings of the importance of ease of use. These findings shed light on the factors predicting parents’ intentions to use ABAs and the app features they view as most important. Crucial directions for future research and implications for antibullying efforts are discussed. 
    more » « less
  4. Recent studies have documented increases in anti-Asian hate throughout the COVID-19 pandemic. Yet relatively little is known about how anti-Asian content on social media, as well as positive messages to combat the hate, have varied over time. In this study, we investigated temporal changes in the frequency of anti-Asian and counter-hate messages on Twitter during the first 16 months of the COVID-19 pandemic. Using the Twitter Data Collection Application Programming Interface, we queried all tweets from January 30, 2020 to April 30, 2021 that contained specific anti-Asian (e.g., #chinavirus, #kungflu) and counter-hate (e.g., #hateisavirus) keywords. From this initial data set, we extracted a random subset of 1,000 Twitter users who had used one or more anti-Asian or counter-hate keywords. For each of these users, we calculated the total number of anti-Asian and counter-hate keywords posted each month. Latent growth curve analysis revealed that the frequency of anti-Asian keywords fluctuated over time in a curvilinear pattern, increasing steadily in the early months and then decreasing in the later months of our data collection. In contrast, the frequency of counter-hate keywords remained low for several months and then increased in a linear manner. Significant between-user variability in both anti-Asian and counter-hate content was observed, highlighting individual differences in the generation of hate and counter-hate messages within our sample. Together, these findings begin to shed light on longitudinal patterns of hate and counter-hate on social media during the COVID-19 pandemic. 
    more » « less
  5. null (Ed.)
    Previous research has identified a link between mental health and cyberbullying, primarily in studies of youth. Fewer studies have examined cyberbullying in adults or how the relation between mental health and cyberbullying might vary based on an individual's social media use. The present research examined how three indicators of mental health—depression, anxiety, and substance use—interact with social media use and gender to predict cyberbullying in adults. In Study 1, U.S. adults recruited through Amazon Mechanical Turk ( N = 525) completed an online survey that included measures of mental health and cyberbullying. Multiple regression analyses revealed significant three-way interactions between mental health, degree of social media use, and gender in models predicting cyberbullying victimization and perpetration. Specifically, for men, depression and anxiety predicted greater cyberbullying victimization and perpetration, particularly among men with relatively higher levels of social media use. In contrast, depression and anxiety were uncorrelated with cyberbullying for women, regardless of level of social media use. Study 2 largely replicated these findings using well-validated measures of mental health (e.g., Center for Epidemiological Studies-Depression scale, Beck Anxiety Inventory, Global Appraisal of Individual Needs Substance Use scale) in U.S. adults recruited through Prolific.co ( N = 482). Together, these results underscore the importance of examining mental health correlates of cyberbullying within the context of social media use and gender and shed light on conditions in which indicators of mental health may be especially beneficial for predicting cyberbullying in adults. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Cyberbullying is rapidly becoming one of the most serious online risks for adolescents. This has motivated work on machine learning methods to automate the process of cyberbullying detection, which have so far mostly viewed cyberbullying as one-off incidents that occur at a single point in time. Comparatively less is known about how cyberbullying behavior occurs and evolves over time. This oversight highlights a crucial open challenge for cyberbullying-related research, given that cyberbullying is typically defined as intentional acts of aggression via electronic communication that occur repeatedly and persistently . In this article, we center our discussion on the challenge of modeling temporal patterns of cyberbullying behavior. Specifically, we investigate how temporal information within a social media session, which has an inherently hierarchical structure (e.g., words form a comment and comments form a session), can be leveraged to facilitate cyberbullying detection. Recent findings from interdisciplinary research suggest that the temporal characteristics of bullying sessions differ from those of non-bullying sessions and that the temporal information from users’ comments can improve cyberbullying detection. The proposed framework consists of three distinctive features: (1) a hierarchical structure that reflects how a social media session is formed in a bottom-up manner; (2) attention mechanisms applied at the word- and comment-level to differentiate the contributions of words and comments to the representation of a social media session; and (3) the incorporation of temporal features in modeling cyberbullying behavior at the comment-level. Quantitative and qualitative evaluations are conducted on a real-world dataset collected from Instagram, the social networking site with the highest percentage of users reporting cyberbullying experiences. Results from empirical evaluations show the significance of the proposed methods, which are tailored to capture temporal patterns of cyberbullying detection. 
    more » « less
  8. Concurrent with the growth and widespread use of social networking platforms has been a rise in the prevalence of cyberbullying and cyberharassment, particularly among youth. Although cyberbullying is frequently defined as hostile communication or interactions that occur repetitively via electronic media, little is known about the temporal aspects of cyberbullying on social media, such as how the number, frequency, and timing of posts may vary systematically between cyberbullying and non-cyberbullying social media sessions. In this paper, we aim to contribute to the understanding of temporal properties of cyberbullying through the analysis of Instagram data. That is, the paper presents key temporal characteristics of cyberbullying and trends obtained from descriptive and burst analysis tasks. Our results have the potential to inform the development of more effective cyberbullying detection models. 
    more » « less
  9. Cyberbullying has become one of the most pressing online risks for adolescents and has raised serious concerns in society. Recent years have witnessed a surge in research aimed at developing principled learning models to detect cyberbullying behaviors. These efforts have primarily focused on building a single generic classification model to differentiate bullying content from normal (non-bullying) content among all users. These models treat users equally and overlook idiosyncratic information about users that might facilitate the accurate detection of cyberbullying. In this paper, we propose a personalized cyberbullying detection framework, PI-Bully, that draws on empirical findings from psychology highlighting unique characteristics of victims and bullies and peer influence from like-minded users as predictors of cyberbullying behaviors. Our framework is novel in its ability to model peer influence in a collaborative environment and tailor cyberbullying prediction for each individual user. Extensive experimental evaluations on real-world datasets corroborate the effectiveness of the proposed framework. 
    more » « less