skip to main content

Search for: All records

Creators/Authors contains: "Hall, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract The MicroBooNE liquid argon time projection chamber located at Fermilab is a neutrino experiment dedicated to the study of short-baseline oscillations, the measurements of neutrino cross sections in liquid argon, and to the research and development of this novel detector technology. Accurate and precise measurements of calorimetry are essential to the event reconstruction and are achieved by leveraging the TPC to measure deposited energy per unit length along the particle trajectory, with mm resolution. We describe the non-uniform calorimetric reconstruction performance in the detector, showing dependence on the angle of the particle trajectory. Such non-uniform reconstruction directly affectsmore »the performance of the particle identification algorithms which infer particle type from calorimetric measurements. This work presents a new particle identification method which accounts for and effectively addresses such non-uniformity. The newly developed method shows improved performance compared to previous algorithms, illustrated by a 93.7% proton selection efficiency and a 10% muon mis-identification rate, with a fairly loose selection of tracks performed on beam data. The performance is further demonstrated by identifying exclusive final states in ν μ CC interactions. While developed using MicroBooNE data and simulation, this method is easily applicable to future LArTPC experiments, such as SBND, ICARUS, and DUNE.« less
    Free, publicly-accessible full text available December 1, 2022
  2. Data from ground-based ozone (O 3 ) vertical profiling platforms operated during the FRAPPE/DISCOVER-AQ campaigns in summer 2014 were used to characterize key processes responsible for establishing O 3 profile development in the boundary layer in the Northern Colorado Front Range. Morning mixing from the upper boundary layer and lower free troposphere into the lower boundary layer was the key process establishing the mid-morning boundary layer O 3 mixing ratio. Photochemical O 3 production throughout the boundary layer builds on the mid-morning profile. From late morning to mid-afternoon the continuing O 3 increase was nearly uniform through the depth ofmore »the profile measured by the tethersonde (~400 m). Ozonesondes flown on a near daily schedule over a four week period with multiple profiles on a number of days captured the full 1500 to 2000 m vertical extent of O 3 enhancements in the mixed boundary layer confirming O 3 production throughout the entire boundary layer. Continuous O 3 measurements from the Boulder Atmospheric Observatory (BAO) tall tower at 6 m and 300 m showed hourly O 3 at the 6 m level ≥75 ppb on 15% of the days. The diurnal variation on these days followed a pattern similar to that seen in the tethersonde profiles. The association of high O 3 days at the BAO tower with transport from sectors with intense oil and natural gas production toward the northeast suggests emissions from this industry were an important source of O 3 precursors and are crucial in producing peak O 3 events in the NCFR. Higher elevation locations to the west of the NCFR plains regularly experience higher O 3 values than those in the lower elevation NCFR locations. Exposure of populations in these areas is not captured by the current regulatory network, and likely underestimated in population O 3 exposure assessments.« less
  3. Free, publicly-accessible full text available October 1, 2022
  4. Abstract Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longitudinal electron diffusion coefficient, D L , in MicroBooNE at the nominal electric field strength of 273.9 V/cm. Historically, this measurement has been made in LArTPC prototype detectors. This represents the first measurement in a large-scale (85 tonne active volume) LArTPC operating in a neutrino beam. This ismore »the largest dataset ever used for this measurement. Using a sample of ∼70,000 through-going cosmic ray muon tracks tagged with MicroBooNE's cosmic ray tagger system, we measure D L = 3.74 +0.28 -0.29 cm 2 /s.« less
    Free, publicly-accessible full text available September 1, 2022
  5. Free, publicly-accessible full text available September 1, 2022