skip to main content


Search for: All records

Creators/Authors contains: "Hallinger, Kelly K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Conditions during early life can have dramatic effects on adult characteristics and fitness. However, we still know little about the mechanisms that mediate these relationships. Telomere shortening is one possibility. Telomeres are long sequences of DNA that protect the ends of chromosomes. They shorten naturally throughout an individual's life, and individuals with short telomeres tend to have poorer health and reduced survival. Given this connection between telomere length (TL) and fitness, natural selection should favor individuals that are able to retain longer telomeres for a greater portion of their lives. However, the ability of natural selection to act on TL depends on the extent to which genetic and environmental factors influence TL. In this study, we experimentally enlarged broods of Tree Swallows (Tachycineta bicolor) to test the effects of demanding early‐life conditions on TL, while simultaneously cross‐fostering chicks to estimate heritable genetic influences on TL. In addition, we estimated the effects of parental age and chick sex on chick TL. We found that TL is highly heritable in Tree Swallow chicks, and that the maternal genetic basis for TL is stronger than is the paternal genetic basis. In contrast, the experimental manipulation of brood size had only a weak effect on chick TL, suggesting that the role of environmental factors in influencing TL early in life is limited. There was no effect of chick sex or parental age on chick TL. While these results are consistent with those reported in some studies, they are in conflict with others. These disparate conclusions might be attributable to the inherent complexity of telomere dynamics playing out differently in different populations or to study‐specific variation in the age at which subjects were measured.

     
    more » « less
  2. Abstract

    Extra‐pair paternity (EPP) is a widespread phenomenon in birds. Researchers have long hypothesized that EPP must confer a fitness advantage to extra‐pair offspring (EPO), but empirical support for this hypothesis is definitively mixed. This could be because genetic benefits of EPP only exist in a subset of environmental contexts to which a population is exposed. From 2013 to 2015, we manipulated perceived predator density in a population of tree swallows (Tachycineta bicolor) breeding in New York to see whether fitness outcomes of extra‐pair and within‐pair offspring (WPO) varied with predation risk. In nests that had been exposed to predators, EPO were larger, longer‐winged and heavier than WPO. In nonpredator nests, WPO tended to be larger, longer‐winged and heavier than EPO, though the effect was nonsignificant. We found no differences in age, morphology or stress physiology between extra‐pair and within‐pair sires from the same nest, suggesting that additive genetic benefits cannot fully explain the differences in nestling size that we observed. The lack of an effect of predator exposure on survival or glucocorticoid stress physiology of EPO and WPO further suggests that observed size differences do not reflect more general variation in intrinsic genetic quality. Instead, we suggest that size differences may have arisen through differential investment into EPO and WPO by females, perhaps because EPO and WPO represent different reproductive strategies, with each type of nestling conferring a fitness advantage in specific ecological contexts.

     
    more » « less
  3. Abstract

    Animals must balance various costs and benefits when deciding when to breed. The costs and benefits of breeding at different times have received much attention, but most studies have been limited to investigating short‐term season‐to‐season fitness effects. However, breeding early, versus late, in a season may influence lifetime fitness over many years, trading off in complex ways across the breeder’s lifespan. In this study, we examined the complete life histories of 867 female tree swallows (Tachycineta bicolor) breeding in Ithaca, New York, between 2002 and 2016. Earlier breeders outperformed later breeders in short‐term measures of reproductive output and offspring quality. Though there were weak indications that females paid long‐term future survival costs for breeding early, lifetime fledgling output was markedly higher overall in early‐breeding birds. Importantly, older females breeding later in the season did not experience compensating life history advantages that suggested an alternative equal‐fitness breeding strategy. Rather, most or all of the swallows appear to be breeding as early as they can, and differences in lay dates appear to be determined primarily by differences in individual quality or condition. Lay date had a significant repeatability across breeding attempts by the same female, and the first lay date of females fledged in our population was strongly influenced by the first lay date of their mothers, indicating the potential for ongoing selection on lay date. By examining performance over the entire lifespan of a large number of individuals, we were able to clarify the relationship between timing of breeding and fitness and gain new insight into the sources of variability in this important life history trait.

     
    more » « less