In freshwater ecosystems, consumers can play large roles in nutrient cycling by modifying nutrient availability for autotrophic and heterotrophic microbes. Nutrients released by consumers directly support Freshwater mussels (Bivalvia: Unionidae) can dominate benthic biomass in aquatic systems as they often occur in dense aggregations that create biogeochemical hotspots that can control ecosystem structure and function through nutrient release. However, despite functional similarities as filter‐feeders, mussels exhibit variation in nutrient excretion and tissue stoichiometry due in part to their phylogenetic origin. Here, we conducted a mesocosm experiment to evaluate how communities of three phylogenetically distinct species of mussels individually and collectively influence components of green and brown food webs. We predicted that the presence of mussels would elicit a positive response in both brown and green food webs by providing nutrients and energy via excretion and biodeposition to autotrophic and heterotrophic microbes. We also predicted that bottom‐up provisioning of nutrients would vary among treatments as a result of stoichiometric differences of species combinations, and that increasing species richness would lead to greater ecosystem functioning through complementarity resulting from greater trait diversity. Our results show that mussels affect the functioning of green and brown food webs through altering nutrient availability for both autotrophic and heterotrophic microbes. These effects are likely to be driven by phylogenetic constraints on tissue nutrient stoichiometry and consequential excretion stoichiometry, which can have functional effects on ecosystem processes. Our study highlights the importance of measuring multiple functional responses across a gradient of diversity in ecologically similar consumers to gain a more holistic view of aquatic food webs.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract green food webs based on primary production andbrown food webs based on decomposition. While much research has focused on impacts of consumer driven nutrient dynamics on green food webs, less attention has been given to studying the effects of these dynamics on brown food webs.Free, publicly-accessible full text available August 1, 2025 -
Abstract Decomposing organic matter forms a substantial resource base, fueling the biogeochemical function and secondary production of most aquatic ecosystems. However, detrital N (nitrogen) and P (phosphorus) dynamics remain relatively unexplored in aquatic ecosystems relative to terrestrial ecosystems, despite fundamentally linking microbial processes to ecosystem function across broad spatial scales. We synthesized 217 published time series of detrital carbon (C), N, P, and their stoichiometric ratios (C:N, C:P, N:P) from stream ecosystems to analyze the temporal nutrient dynamics of decomposing litter using generalized additive models. Model results indicated that detritus was a net source of N (irrespective of inorganic or organic form) to the environment, regardless of initial N content. In contrast, P sink/source dynamics were more strongly influenced by the initial P content, in which P‐poor litters were sinks for nutrients until these shifted to net P mineralization after ~40% mass loss. However, large variations surrounded both the N and P predictions, suggesting the importance of nonmicrobial factors such as fragmentation by invertebrates. Detrital C:N ratios converged and became more similar toward the end of the decomposition, suggesting predictable microbial functional effects throughout detrital ontogeny. C:P and N:P ratios also converged to some degree, but these model predictions were less robust than for C:N, due in part to the lower number of published detrital C:P time series. The explorations of environmental covariate effects were frequently limited by a few coincident covariate measurements across studies, but temperature, N availability, and P tended to accelerate the existing ontogenetic patterns in C:N. Our analysis helps to unite organic matter decomposition across aquatic–terrestrial boundaries by describing the basic patterns of elemental flows catalyzed by decomposition in streams, and points to a research agenda with which to continue addressing gaps in our knowledge of detrital nutrient dynamics across ecosystems.
-
Abstract Decomposition of coarse detritus (e.g., dead organic matter larger than ~1 mm such as leaf litter or animal carcasses) in freshwater ecosystems is well described in terms of mass loss, particularly as rates that compress mass loss into one number (e.g., a first‐order decay coefficient, or breakdown rate, “
k ”); less described are temporal changes in the elemental composition of these materials during decomposition, with important implications for elemental cycling from microbes to ecosystems. This stands in contrast with work in the terrestrial realm, where a focus on detrital elemental cycling has provided a sharper mechanistic understanding of decomposition, especially with specific processes such as immobilization and mineralization. Notably, freshwater ecologists often measure carbon (C), nitrogen (N), and phosphorus (P), and their stoichiometric ratios in decomposing coarse materials, including carcasses, wood, leaf litter, and more, but these measurements remain piecemeal. These detrital nutrients are measurements of the entire detrital–microbial complex and are integrative of numerous processes, especially nutrient immobilization and mineralization, and associated microbial growth and death. Thus, data relevant to an elemental, mechanistically focused decomposition ecology are available in freshwaters, but have not been fully applied to that purpose. We synthesized published detrital nutrient and stoichiometry measurements at a global scale, yielding 4038 observations comprising 810 decomposition time series (i.e., measurements within a defined cohort of decomposing material through time) to build a basis for understanding the temporality of elemental content in freshwater detritus. Specifically, the dataset focuses on temporally and ontogenetically (mass loss) explicit measurements of N, P, and stoichiometry (C:N, C:P, N:P). We also collected ancillary data, including detrital characteristics (e.g., species, lignin content), water physiochemistry, geographic location, incubation system type, and methodological variables (e.g., bag mesh size). These measurements are important to unlocking mechanistic insights into detrital ontogeny (the temporal trajectory of decomposing materials) that can provide a deeper understanding of heterotroph‐driven C and nutrient cycling in freshwaters. Moreover, these data can help to bridge aquatic and terrestrial decomposition ecology, across plant or animal origin. By focusing on temporal trajectories of elements, this dataset facilitates cross‐ecosystem comparisons of fundamental decomposition controls on elemental fluxes. It provides a strong starting point (e.g., via modeling efforts) for comparing processes such as immobilization and mineralization that are understudied in freshwaters. Time series from decomposing leaf litter, particularly in streams, are common in the dataset, but we also synthesized ontogenies of animal‐based detritus, which tend to decompose rapidly compared with plant‐based detritus that contains high concentrations of structural compounds such as lignin and cellulose. Although animal‐based data were rare, comprising only three time series, their inclusion in this dataset underscores the opportunities to develop an understanding of decomposition that encompasses all detrital types, from carrion to leaf litter. There are no copyright or proprietary restrictions on the dataset; please cite this data paper when reusing these materials. -
Abstract In aquatic detrital‐based food webs, research suggests that autotroph‐heterotroph microbial interactions exert bottom‐up controls on energy and nutrient transfer. To address this emerging topic, we investigated microbial responses to nutrient and light treatments during
Liriodendron tulipifera litter decomposition and fed litter to the caddisfly larvaePycnopsyche sp. We measured litter‐associated algal, fungal, and bacterial biomass and production. Microbes were also labeled with14C and33P to trace distinct microbial carbon (C) and phosphorus (P) supportingPycnopsyche assimilation and incorporation (growth). Litter‐associated algal and fungal production rates additively increased with higher nutrient and light availability. Incorporation of microbial P did not differ across diets, except for higher incorporation efficiency of slower‐turnover P on low‐nutrient, shaded litter. On average,Pycnopsyche assimilated fungal C more efficiently than bacterial or algal C, andPycnopsyche incorporated bacterial C more efficiently than algal or fungal C. Due to high litter fungal biomass, fungi supported 89.6–93.1% ofPycnopsyche C growth, compared to 0.2% to 3.6% supported by bacteria or algae. Overall,Pycnopsyche incorporated the most C in high nutrient and shaded litter. Our findings affirm others' regarding autotroph‐heterotroph microbial interactions and extend into the trophic transfer of microbial energy and nutrients through detrital food webs. -
Light and temperature mediate algal stimulation of heterotrophic activity on decomposing leaf litter
Abstract Recent evidence suggests that periphytic algae stimulate plant litter heterotrophs (fungi and bacteria) in the presence of light, but few studies have tested whether this stimulation varies across gradients of light, which may covary with temperature.
We exposed field‐conditioned
Typha domingensis litter to fully‐crossed, short‐term gradients of temperature (15, 20, 25, and 30°C) and light (0, 25, 53, 123, and 388 µmol quanta m−2 s−1) and measured responses of litter‐associated algal, fungal, and bacterial production rates and β‐glucosidase, β‐xylosidase, and phenol oxidase enzyme activities in the laboratory.Increased light stimulated algal production rates, from immeasurable production under darkness to >200 µg algal C g−1detrital C hr−1at the highest light level, with the greatest light sensitivity and maximal photosynthetic rates at 25°C. In turn, increased light stimulated fungal production rates, especially at the two highest temperatures and most strongly at 25°C where light stimulated fungal production by a mean of 65 µg C g−1detrital C hr−1, indicating 2.1‐fold stimulation by light. Bacterial production rates also responded to light, indicated by stimulation of a mean of 16 µg C g−1detrital C hr−1(1.6‐fold) at 15°C, but stimulation was weaker at higher temperatures. Enzyme activities increased strongly with elevated temperature but were not affected by light.
Our experimental evidence suggests algae differentially stimulate litter‐associated bacteria and fungi in a light‐dependent manner that further depends on temperature. These findings advance understanding of the onset of algal stimulation of heterotrophy, including algal‐induced priming effects during litter decomposition, in response to common covarying environmental gradients subject to global change.