Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract PremiseA switch in pollinator can occur when a plant lineage enters a new habitat where the ancestral pollinator is less common, and a novel pollinator is more common. Because pollinator communities vary according to environmental tolerances and availability of resources, there may be consistent associations between pollination mode and specific regions and habitats. Such associations can be studied in lineages that have experienced multiple pollinator transitions, representing evolutionary replicates. MethodsOur study focused on a large clade ofPenstemonwildflower species in western North America, which has repeatedly evolved hummingbird‐adapted flowers from ancestral bee‐adapted flowers. For each species, we estimated geographic ranges from occurrence data and inferred environmental niches from climate, topographical, and soil data. Using a phylogenetic comparative approach, we investigated whether hummingbird‐adapted species occupy distinct geographic regions or habitats relative to bee‐adapted species. ResultsHummingbird‐adapted species occur at lower latitudes and lower elevations than bee‐adapted species, resulting in a difference in their environmental niche. Bee‐adapted species sister to hummingbird‐adapted species are also found in relatively low elevations and latitudes, similar to their hummingbird‐adapted sister species, suggesting ecogeographic shifts precede pollinator divergence. Sister species pairs—regardless of whether they differ in pollinator—show relatively little geographic range overlap. ConclusionsAdaptation to a novel pollinator may often occur in geographic and ecological isolation from ancestral populations. The ability of a given lineage to adapt to novel pollinators may critically depend on its ability to colonize regions and habitats associated with novel pollinator communities.more » « less
-
Premise: A switch in pollinator can occur when a plant lineage enters a new habitat where the ancestral pollinator is less common and a novel pollinator is more common. Since pollinator communities vary according to environmental tolerances and availability of resources, there may be consistent associations between pollination mode and specific regions and habitats. Such associations can be studied in lineages that have experienced multiple pollinator transitions, representing evolutionary replicates. Methods: Our study focused on a large clade of Penstemon wildflower species in western North America that has repeatedly evolved hummingbird-adapted flowers from ancestral bee-adapted flowers. For each species, we estimated geographic ranges from occurrence data and inferred environmental niches from climate, topographical, and soil data. Using a phylogenetic comparative approach, we investigated whether hummingbird-adapted species occupy distinct geographic regions or habitats relative to beeadapted species. Results: Hummingbird-adapted species occur at lower latitudes and lower elevations than bee-adapted species, resulting in a difference in their environmental niche. Hummingbird-adapted species seem to evolve in lineages that previously adapted to lower latitudes and elevations, since bee-adapted species sister to hummingbird-adapted species also occur in these regions and habitats. Sister species pairs – regardless of whether they differ in pollinator – show relatively little geographic range overlap. Conclusions: Adaptation to a novel pollinator may often occur in geographic and ecological isolation from ancestral populations. The ability of a given lineage to adapt to novel pollinators may critically depend on its ability to colonize regions and habitats associated with novel pollinator communities.more » « less
-
Under the recently adopted Kunming‐Montreal Global Biodiversity Framework, 196 Parties committed to reporting the status of genetic diversity for all species. To facilitate reporting, three genetic diversity indicators were developed, two of which focus on processes contributing to genetic diversity conservation: maintaining genetically distinct populations and ensuring populations are large enough to maintain genetic diversity. The major advantage of these indicators is that they can be estimated with or without DNA‐based data. However, demonstrating their feasibility requires addressing the methodological challenges of using data gathered from diverse sources, across diverse taxonomic groups, and for countries of varying socio‐economic status and biodiversity levels. Here, we assess the genetic indicators for 919 taxa, representing 5271 populations across nine countries, including megadiverse countries and developing economies. Eighty‐three percent of the taxa assessed had data available to calculate at least one indicator. Our results show that although the majority of species maintain most populations, 58% of species have populations too small to maintain genetic diversity. Moreover, genetic indicator values suggest that IUCN Red List status and other initiatives fail to assess genetic status, highlighting the critical importance of genetic indicators.more » « less
-
Abstract AimHumans are unintentionally affecting the evolution of fishery species directly through exploitation and indirectly by altering climate. We aim to test for a relationship between biogeographic patterns in the shell phenotypes of an over‐exploited shellfish and the presence of humans to identify human‐mediated adaptive trade‐offs. The implications of these trade‐offs are discussed with respect to the sustainability of the fishery. TaxonThe endemic Hawaiian intertidal limpet, ‘opihi makaiauli (Patellagastropoda, Nacellidae, Cellana exarata) MethodsWe surveyed phenotypic characters associated with temperature and predation avoidance across the entire species range and tested for differences in the relationship between these characters and latitude, on islands with and without humans. ResultsAmong all limpets surveyed, there was a bimodal distribution in shell colour (light, dark) and a parapatric pattern of shell coloration across the archipelago with lighter shells being prevalent on the uninhabited islands and darker, more camouflaged shells being prevalent on the inhabited islands. On the cooler, uninhabited islands, all morphometric characters associated with thermal avoidance (surface area, height and doming) increased with decreasing latitude. On the hotter, inhabited islands, however, shells were flatter, less variable and less adapted for avoiding thermal stress than predation. Main ConclusionsThe biogeographic patterns in shell phenotype and previous genetic studies suggest that the population is beginning to bifurcate in response to disruptive and directional selection as well as geographic isolation between the islands with and without humans. Decreased phenotypic and genetic diversity on the inhabited islands despite much larger populations of ‘opihi suggests a prominent historical bottleneck. The prevalence of maladaptive dark, flat phenotypes for thermal avoidance on the inhabited islands suggests that predation is a stronger selective force, driving adaptive trade‐offs in shape and colour. We propose that this is likely a case of fisheries‐induced evolution and a millennium of harvesting is the most likely selective pressure driving the observed biogeographic patterns in shell morphology. The flatter, darker shells will allow body temperatures to rise higher in direct sunlight, therefore we hypothesize that the thermal niche of ‘opihi is narrower on inhabited islands and will continue to narrow as Earth warms.more » « less
An official website of the United States government
