skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hamilton, Douglas S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Estimating past aerosol radiative effects and their uncertainties is an important topic in climate science. Aerosol radiative effects propagate into large uncertainties in estimates of how present and future climate evolves with changing greenhouse gas emissions. A deeper understanding of how aerosols affected the atmospheric energy budget under past climates is hindered in part by a lack of relevant paleo-observations and in part because less attention has been paid to the problem. Because of the lack of information we do not seek here to determine the change in the radiative forcing due to aerosol changes but rather to estimate the uncertainties in those changes. Here we argue that current uncertainties from emission uncertainties (90 % confidence interval range spanning 2.8 W m−2) are just as large as model spread uncertainties (2.8 W m−2) in calculating preindustrial to present-day aerosol radiative effects. There are no estimates of radiative forcing for important aerosols such as wildfire and dust aerosols in most paleoclimate time periods. However, qualitative analysis of paleoclimate proxies suggests that changes in aerosols between different past climates are similar in magnitude to changes in aerosols between the preindustrial and present day; plus, there is the added uncertainty from the variability in aerosols and fires in the preindustrial. From the limited literature we crudely estimate a paleoclimate aerosol uncertainty for the Last Glacial Maximum relative to preindustrial of 4.8 W m−2, and we estimate the uncertainty in the aerosol feedback in the natural Earth system over the paleoclimate (Last Glacial Maximum to preindustrial) to be about 3.2 W m−2 K−1. In order to more accurately assess the uncertainty in historical aerosol radiative effects, we propose a new model intercomparison project, which would include multiple plausible emission scenarios tested across a range of state-of-the-art climate models over the historical period. These emission scenarios would then be compared to the available independent aerosol observations to constrain which are most probable. In addition, future efforts should work to characterize and constrain paleo-aerosol forcings and uncertainties. Careful propagation of aerosol uncertainties in the literature is required to ensure an accurate quantification of uncertainties in projections of future climate changes. 
    more » « less
  2. Abstract Biological nitrogen fixation is a key process balancing the loss of combined nitrogen in the marine nitrogen cycle. Its relevance in upwelling or high nutrient regions is still unclear, with the few available studies in these regions of the ocean reporting rates that vary widely from below detection limit to > 100 nmol N L−1 d−1. In the eastern tropical Atlantic Ocean, two open ocean upwelling systems are active in boreal summer. One is the seasonal equatorial upwelling, where the residual phosphorus associated with aged upwelled waters is suggested to enhance nitrogen fixation in this season. The other is the Guinea Dome, a thermal upwelling dome. We conducted two surveys along 23° W across the Guinea Dome and the Equator from 15° N to 5° S in September 2015 and August–September 2016 with high latitudinal resolution (20–60 nm between stations). The abundance ofTrichodesmiumcolonies was characterized by an Underwater Vision Profiler 5 and the total biological nitrogen fixation in the euphotic layer was measured using the15N2technique. The highest abundances ofTrichodesmiumcolonies were found in the area of the Guinea Dome (9°–15° N) with a maximum of 3 colonies L−1near the surface. By contrast, colonies were almost absent in the Equatorial band between 2° N and 5° S. The highest nitrogen fixation rate was measured at the northern edge of the Guinea Dome in 2016 (ca. 31 nmol N L−1 d−1). In this region, where diazotrophs thrived on a sufficient supply of both phosphorus and iron, a patchy distribution was unveiled by our increased spatial resolution scheme. In the Equatorial band, rates were considerably lower, ranging from below detection limit to ca. 4 nmol N L−1 d−1, with a clear difference in magnitude between 2015 (rates close to zero) and 2016 (average rates around 2 nmol N L−1 d−1). This difference seemed triggered by a contrasting supply of phosphorus between years. Our study stresses the importance of surveys with sampling at fine-scale spatial resolution, and shows unexpected high variability in the rates of nitrogen fixation in the Guinea Dome, a region where diazotrophy is a significant process supplying new nitrogen into the euphotic layer. 
    more » « less
  3. Abstract Iron emissions from human activities, such as oil combustion and smelting, affect the Earth's climate and marine ecosystems. These emissions are difficult to quantify accurately due to a lack of observations, particularly in remote ocean regions. In this study, we used long‐term, near‐source observations in areas with a dominance of anthropogenic iron emissions in various parts of the world to better estimate the total amount of anthropogenic iron emissions. We also used a statistical source apportionment method to identify the anthropogenic components and their sub‐sources from bulk aerosol observations in the United States. We find that the estimates of anthropogenic iron emissions are within a factor of 3 in most regions compared to previous inventory estimates. Under‐ or overestimation varied by region and depended on the number of sites, interannual variability, and the statistical filter choice. Smelting‐related iron emissions are overestimated by a factor of 1.5 in East Asia compared to previous estimates. More long‐term iron observations and the consideration of the influence of dust and wildfires could help reduce the uncertainty in anthropogenic iron emissions estimates. 
    more » « less
  4. Abstract. Aerosol particles are an important part of the Earth climate system, and their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Particles can interact with incoming solar radiation and outgoing longwave radiation, change cloud properties, affect photochemistry, impact surface air quality, change the albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. High particulate matter concentrations at the surface represent an important public health hazard. There are substantial data sets describing aerosol particles in the literature or in public health databases, but they have not been compiled for easy use by the climate and air quality modeling community. Here, we present a new compilation of PM2.5 and PM10 surface observations, including measurements of aerosol composition, focusing on the spatial variability across different observational stations. Climate modelers are constantly looking for multiple independent lines of evidence to verify their models, and in situ surface concentration measurements, taken at the level of human settlement, present a valuable source of information about aerosols and their human impacts complementarily to the column averages or integrals often retrieved from satellites. We demonstrate a method for comparing the data sets to outputs from global climate models that are the basis for projections of future climate and large-scale aerosol transport patterns that influence local air quality. Annual trends and seasonal cycles are discussed briefly and are included in the compilation. Overall, most of the planet or even the land fraction does not have sufficient observations of surface concentrations – and, especially, particle composition – to characterize and understand the current distribution of particles. Climate models without ammonium nitrate aerosols omit ∼ 10 % of the globally averaged surface concentration of aerosol particles in both PM2.5 and PM10 size fractions, with up to 50 % of the surface concentrations not being included in some regions. In these regions, climate model aerosol forcing projections are likely to be incorrect as they do not include important trends in short-lived climate forcers. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. This perspective piece on aerosol deposition to marine ecosystems and the related impacts on biogeochemical cycles forms part of a larger Surface Ocean Lower Atmosphere Study status-of-the-science special edition. A large body of recent reviews has comprehensively covered different aspects of this topic. Here, we aim to take a fresh approach by reviewing recent research to identify potential foundations for future study. We have purposefully chosen to discuss aerosol nutrient and pollutant fluxes both in terms of the journey that different aerosol particles take and that of the surrounding scientific field exploring them. To do so, we explore some of the major tools, knowledge, and partnerships we believe are required to aid advancing this highly interdisciplinary field of research. We recognize that significant gaps persist in our understanding of how far aerosol deposition modulates marine biogeochemical cycles and thus climate. This uncertainty increases as socioeconomic pressures, climate change, and technological advancements continue to change how we live and interact with the marine environment. Despite this, recent advances in modeling techniques, satellite remote sensing, and field observations have provided valuable insights into the spatial and temporal variability of aerosol deposition across the world’s ocean. With the UN Ocean Decade and sustainable development goals in sight, it becomes essential that the community prioritizes the use of a wide variety of tools, knowledge, and partnerships to advance understanding. It is through a collaborative and sustained effort that we hope the community can address the gaps in our understanding of the complex interactions between aerosol particles, marine ecosystems, and biogeochemical cycles. 
    more » « less
  6. null (Ed.)
    Abstract. Even though desert dust is the most abundant aerosol bymass in Earth's atmosphere, the relative contributions of the world's majorsource regions to the global dust cycle remain poorly constrained. Thisproblem hinders accounting for the potentially large impact of regionaldifferences in dust properties on clouds, the Earth's energy balance, andterrestrial and marine biogeochemical cycles. Here, we constrain thecontribution of each of the world's main dust source regions to the globaldust cycle. We use an analytical framework that integrates an ensemble ofglobal aerosol model simulations with observationally informed constraintson the dust size distribution, extinction efficiency, and regional dustaerosol optical depth (DAOD). We obtain a dataset that constrains therelative contribution of nine major source regions to size-resolveddust emission, atmospheric loading, DAOD, concentration, and depositionflux. We find that the 22–29 Tg (1 standard error range) global loading ofdust with a geometric diameter up to 20 µm is partitioned as follows:North African source regions contribute ∼ 50 % (11–15 Tg),Asian source regions contribute ∼ 40 % (8–13 Tg), and NorthAmerican and Southern Hemisphere regions contribute ∼ 10 %(1.8–3.2 Tg). These results suggest that current models on averageoverestimate the contribution of North African sources to atmospheric dustloading at ∼ 65 %, while underestimating the contribution ofAsian dust at ∼ 30 %. Our results further show that eachsource region's dust loading peaks in local spring and summer, which ispartially driven by increased dust lifetime in those seasons. We alsoquantify the dust deposition flux to the Amazon rainforest to be∼ 10 Tg yr−1, which is a factor of 2–3 less than inferred fromsatellite data by previous work that likely overestimated dust deposition byunderestimating the dust mass extinction efficiency. The data obtained inthis paper can be used to obtain improved constraints on dust impacts onclouds, climate, biogeochemical cycles, and other parts of the Earth system. 
    more » « less
  7. The supply of nutrients is a fundamental regulator of ocean productivity and carbon sequestration. Nutrient sources, sinks, residence times, and elemental ratios vary over broad scales, including those resulting from climate-driven changes in upper water column stratification, advection, and the deposition of atmospheric dust. These changes can alter the proximate elemental control of ecosystem productivity with cascading ecological effects and impacts on carbon sequestration. Here, we report multidecadal observations revealing that the ecosystem in the eastern region of the North Pacific Subtropical Gyre (NPSG) oscillates on subdecadal scales between inorganic phosphorus (P i ) sufficiency and limitation, when P i concentration in surface waters decreases below 50–60 nmol⋅kg −1 . In situ observations and model simulations suggest that sea-level pressure changes over the northwest Pacific may induce basin-scale variations in the atmospheric transport and deposition of Asian dust-associated iron (Fe), causing the eastern portion of the NPSG ecosystem to shift between states of Fe and P i limitation. Our results highlight the critical need to include both atmospheric and ocean circulation variability when modeling the response of open ocean pelagic ecosystems under future climate change scenarios. 
    more » « less
  8. null (Ed.)
    Abstract. Even though desert dust is the most abundant aerosol bymass in Earth's atmosphere, atmospheric models struggle to accuratelyrepresent its spatial and temporal distribution. These model errors arepartially caused by fundamental difficulties in simulating dust emission incoarse-resolution models and in accurately representing dust microphysicalproperties. Here we mitigate these problems by developing a new methodologythat yields an improved representation of the global dust cycle. We presentan analytical framework that uses inverse modeling to integrate an ensembleof global model simulations with observational constraints on the dust sizedistribution, extinction efficiency, and regional dust aerosol opticaldepth. We then compare the inverse model results against independentmeasurements of dust surface concentration and deposition flux and find thaterrors are reduced by approximately a factor of 2 relative to currentmodel simulations of the Northern Hemisphere dust cycle. The inverse modelresults show smaller improvements in the less dusty Southern Hemisphere,most likely because both the model simulations and the observationalconstraints used in the inverse model are less accurate. On a global basis,we find that the emission flux of dust with a geometric diameter up to 20 µm (PM20) is approximately 5000 Tg yr−1, which is greater than mostmodels account for. This larger PM20 dust flux is needed to matchobservational constraints showing a large atmospheric loading of coarsedust. We obtain gridded datasets of dust emission, vertically integratedloading, dust aerosol optical depth, (surface) concentration, and wet anddry deposition fluxes that are resolved by season and particle size. As ourresults indicate that this dataset is more accurate than current modelsimulations and the MERRA-2 dust reanalysis product, it can be used toimprove quantifications of dust impacts on the Earth system. 
    more » « less
  9. Abstract The iron cycle is a key component of the Earth system. Yet how variable the atmospheric flux of soluble (bioaccessible) iron into oceans is, and how this variability is modulated by human activity and a changing climate, is not well known. For the first time, we characterize Satellite Era (1980 to 2015) daily‐to‐interannual modeled soluble iron emission and deposition variability from both pyrogenic (fires and anthropogenic combustion) and dust sources. Statistically significant emission trends exist: dust iron decreases, fire iron slightly increases, and anthropogenic iron increases. A strong temporal variability in deposition to ocean basins is found, and, for most regions, dust iron dominates the absolute deposition magnitude, fire iron is an important contributor to temporal variability, and anthropogenic iron imposes a significant increasing trend. Quantifying soluble iron daily‐to‐interannual deposition variability from all major iron sources, not only dust, will advance quantification of changes in marine biogeochemistry in response to the continuing human perturbation to the Earth System. 
    more » « less