- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Assad, Anis (2)
-
Rao, Prahalada (2)
-
Bevans, Benjamin (1)
-
Bevans, Benjamin D (1)
-
Cormier, Denis (1)
-
Deschamps, Fernando (1)
-
Hamilton, Jakob (1)
-
Hamilton, Jakob D (1)
-
Potter, Willem (1)
-
Rivero, Iris (1)
-
Rivero, Iris V (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The objective of this work is to detect process instabilities in laser wire directed energy deposition additive manufacturing process using real-time data from a high-speed imaging meltpool sensor. The laser wire directed energy deposition process combines the advantages of powder directed energy deposition and other wire-based additive manufacturing processes, such as wire arc additive manufacturing, as it provides both appreciable resolution and high deposition rates. However, the process tends to create sub-optimal quality parts with poor surface finish, geometric distortion, and delamination in extreme cases. This sub-optimal quality stems from poorly understood thermophysical phenomena and stochastic effects. Hence, flaw formation often occurs despite considerable effort to optimize the processing parameters. In order to overcome this limitation of laser wire directed energy deposition, real-time and accurate monitoring of the process quality state is the essential first step for future closed-loop quality control of the process. In this work we extracted low-level, physically intuitive, features from acquired meltpool images. Physically intuitive features such as meltpool shape, size, and brightness provide a fundamental understanding of the processing regimes that are understandable by human operators. These physically intuitive features were used as inputs to simple machine learning models, such as k-nearest neighbors, support vector machine, etc., trained to classify the process state into one of four possible regimes. Using simple machine learning models forgoes the need to use complex black box modeling such as convolutional neural networks to monitor the high speed meltpool images to determine process stability. The classified regimes identified in this work were stable, dripping, stubbing, and incomplete melting. Regimes such as dripping, stubbing, and incomplete melting regimes fall under the realm of unstable processing conditions that are liable to lead to flaw formation in the laser wire directed energy deposition process. The foregoing three process regimes are the primary source of sub-optimal quality parts due to the degradation of the single-track quality that are the fundamental building block of all manufactured samples. Through a series of single-track experiments conducted over 128 processing conditions, we show that the developed approach is capable of accurately classifying the process state with a statistical fidelity approaching 90% F-score. This level of statistical fidelity was achieved using eight physically intuitive meltpool morphology and intensity features extracted from 159,872 meltpool images across all 128 process conditions. These eight physically intuitive features were then used for the training and testing of a support vector machine learning model. This prediction fidelity achieved using physically intuitive features is at par with computationally intense deep learning methods such as convolutional neural networks.more » « less
-
Assad, Anis; Bevans, Benjamin D; Potter, Willem; Rao, Prahalada; Cormier, Denis; Deschamps, Fernando; Hamilton, Jakob D; Rivero, Iris V (, Materials & Design)
An official website of the United States government
