skip to main content

Search for: All records

Creators/Authors contains: "Hammerling, Michael J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) diagnostic tests for SARS-CoV-2 are the cornerstone of the global testing infrastructure. However, these tests require cold-chain shipping to distribute, and the labor of skilled technicians to assemble reactions and interpret the results. Strategies to reduce shipping and labor costs at the point-of-care could aid in diagnostic testing scale-up and response to the COVID-19 outbreak, as well as in future outbreaks. Methods In this study we test both lab-developed and commercial SARS-CoV-2 diagnostic RT-qPCR mixes for the ability to be stabilized against elevated temperature by lyophilization. Fully assembled reactions were lyophilized and stored for up to a month at ambient or elevated temperature and were subsequently assayed for their ability to detect dilutions of synthetic SARS-CoV-2 RNA. Results Of the mixes tested, we show that one commercial mix can maintain activity and sensitivity after storage for at least 30 days at ambient temperature after lyophilization. We also demonstrate that lyoprotectants such as disaccharides can stabilize freeze-dried diagnostic reactions against elevated temperatures (up to 50°C) for at least 30 days. Conclusion We anticipate that the incorporation of these methods into SARS-CoV-2 diagnostic testing will improve testing pipelines by reducing labor at the testing facilitymore »and eliminating the need for cold-chain shipping.« less
  2. Abstract Engineering the process of molecular translation, or protein biosynthesis, has emerged as a major opportunity in synthetic and chemical biology to generate novel biological insights and enable new applications (e.g. designer protein therapeutics). Here, we review methods for engineering the process of translation in vitro. We discuss the advantages and drawbacks of the two major strategies—purified and extract-based systems—and how they may be used to manipulate and study translation. Techniques to engineer each component of the translation machinery are covered in turn, including transfer RNAs, translation factors, and the ribosome. Finally, future directions and enabling technological advances for the field are discussed.
  3. Abstract

    Directed evolution of the ribosome for expanded substrate incorporation and novel functions is challenging because the requirement of cell viability limits the mutations that can be made. Here we address this challenge by combining cell-free synthesis and assembly of translationally competent ribosomes with ribosome display to develop a fully in vitro methodology for ribosome synthesis and evolution (called RISE). We validate the RISE method by selecting active genotypes from a ~1.7 × 107member library of ribosomal RNA (rRNA) variants, as well as identifying mutant ribosomes resistant to the antibiotic clindamycin from a library of ~4 × 103rRNA variants. We further demonstrate the prevalence of positive epistasis in resistant genotypes, highlighting the importance of such interactions in selecting for new function. We anticipate that RISE will facilitate understanding of molecular translation and enable selection of ribosomes with altered properties.