skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hammond, Douglas E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mercury (Hg) is a global pollutant with substantial human health impacts. While most studies focus on atmospheric total Hg (THg) deposition, contributions of methylated Hg (MeHg), including monomethylmercury (MMHg) and dimethylmercury (DMHg), remain poorly understood. To examine this, we use rain and aerosol Hg speciation data and high-resolution surface DMHg measurements, collected on a transect from Alaskan coastal waters to the Bering and Chukchi Seas. We observed a significant fivefold increase in the MeHg:THg fraction in rain and a 10-fold increase for aerosols, closely linked to elevated surface DMHg and the highest DMHg evasion (~9.4 picomoles per square meter per hour) found in upwelling waters near the Aleutian Islands. These data highlight a previously underexplored aspect of MeHg air-sea exchange and its importance to Hg cycling and human health concerns. Our findings emphasize the importance of DMHg evasion by demonstrating that atmospheric MeHg can be transported long distances (~1700 kilometers) in the Arctic, posing risks to human health and ecosystems. 
    more » « less
    Free, publicly-accessible full text available March 21, 2026
  2. Abstract Radium‐226(226Ra) and barium (Ba) exhibit similar chemical behaviors and distributions in the marine environment, serving as valuable tracers of water masses, ocean mixing, and productivity. Despite their similar distributions, these elements originate from distinct sources and undergo disparate biogeochemical cycles, which might complicate the use of these tracers. In this study, we investigate these processes by analyzing a full‐depth ocean section of226Ra activities (T1/2 = 1,600 years) and barium concentrations obtained from samples collected along the US GEOTRACES GP15 Pacific Meridional Transect during September–November 2018, spanning from Alaska to Tahiti. We find that surface waters possess low levels of226Ra and Ba due to export of sinking particulates, surpassing inputs from the continental margins. In contrast, deep waters have higher226Ra activities and Ba concentrations due to inputs from particle regeneration and sedimentary sources, with226Ra inputs primarily resulting from the decay of230Th in sediments. Further, dissolved226Ra and Ba exhibit a strong correlation along the GP15 section. To elucidate the drivers of the correlation, we used a water mass analysis, enabling us to quantify the influence of water mass mixing relative to non‐conservative processes. While a significant fraction of each element's distribution can be explained by conservative mixing, a considerable fraction cannot. The balance is driven using non‐conservative processes, such as sedimentary, rivers, or hydrothermal inputs, uptake and export by particles, and particle remineralization. Our study demonstrates the utility of226Ra and Ba as valuable biogeochemical tracers for understanding ocean processes, while shedding light on conservative and myriad non‐conservative processes that shape their respective distributions. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  3. Abstract This study examines causes of the double silica maximum in the deep interior Northeast Pacific Basin using a stochastic Lagrangian tracer model based on steady‐state advective fields and diapycnal diffusion established by a hydrographic inverse method that conserves potential vorticity and salinity. Lateral diffusion, unresolved by the inverse model, is adjusted for overall agreement with radiocarbon distribution. The double silica maximum in vertical profiles arises from an eastern‐intensified single maximum in the North Pacific Deep Water along the northern domain boundary (originating in the western Pacific), and a strong subarctic bottom source supplying silica to Upper Circumpolar Deep Water density surfaces that successively intersect the seafloor over a broad area east of 150°W, associated geostrophically with southward flow. The existence of the double silica maximum requires weak diapycnal transport in the deep interior, with broader implications for the conceptual picture of meridional overturning circulation in the North Pacific. 
    more » « less
  4. null (Ed.)