skip to main content


Search for: All records

Creators/Authors contains: "Hammond, Ming C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Hypr cGAMP signaling pathway was discovered via the function of the riboswitch. In this study, we show the development of a method for affinity capture followed by sequencing to identify non-coding RNA regions that bind nucleotide signals such as cGAMP. The RNAseq of affinity-captured cGAMP riboswitches from the Geobacter sulfurreducens transcriptome highlights general challenges that remain for this technique. Furthermore, by applying riboswitch reporters in vivo, we identify new growth conditions and transposon mutations that affect cGAMP levels in G. sulfurreducens. This work reveals an extensive regulatory network and supports a second functional cGAMP synthase gene in G. sulfurreducens. The activity of the second synthase was validated using riboswitch-based fluorescent biosensors, and is the first known example of an active enzyme with a variant GGDDF motif. 
    more » « less
  2. Microscopic organisms known as bacteria are found in virtually every environment on the planet. One reason bacteria are so successful is that they are able to form communities known as biofilms on surfaces in animals and other living things, as well as on rocks and other features in the environment. These biofilms protect the bacteria from fluctuations in the environment and toxins. For over 30 years, a class of enzymes called the GGDEF enzymes were thought to make a single signal known as cyclic di-GMP that regulates the formation of biofilms. However, in 2016, a team of researchers reported that some GGDEF enzymes, including one from a bacterium called Geobacter sulfurreducens, were also able to produce two other signals known as cGAMP and cyclic di-AMP. The experiments involved making the enzymes and testing their activity outside the cell. Therefore, it remained unclear whether these enzymes (dubbed ‘Hypr’ GGDEF enzymes) actually produce all three signals inside cells and play a role in forming bacterial biofilms. G. sulfurreducens is unusual because it is able to grow on metallic minerals or electrodes to generate electrical energy. As part of a community of microorganisms, they help break down pollutants in contaminated areas and can generate electricity from wastewater. Now, Hallberg, Chan et al. – including many of the researchers involved in the 2016 work – combined several experimental and mathematical approaches to study the Hypr GGDEF enzymes in G. sulfurreducens. The experiments show that the Hypr GGDEF enzymes produced cGAMP, but not the other two signals, inside the cells. This cGAMP regulated the ability of G. sulfurreducens to grow by extracting electrical energy from the metallic minerals, which appears to be a new, biofilm-less lifestyle. Further experiments revealed how Hypr GGDEF enzymes have evolved to preferentially make cGAMP over the other two signals. Together, these findings demonstrate that enzymes with the ability to make several different signals, are capable of generating specific responses in bacterial cells. By understanding how bacteria make decisions, it may be possible to change their behaviors. The findings of Hallberg, Chan et al. help to identify the signaling pathways involved in this decision-making and provide new tools to study them in the future. 
    more » « less
  3. Abstract

    Bacteria contain a diverse set of RNAs to provide tight regulation of gene expression in response to environmental stimuli. Bacterial small RNAs (sRNAs) work in conjunction with protein cofactors to bind complementary mRNA sequences in the cell, leading to up‐ or downregulation of protein synthesis.In vivoimaging of sRNAs can aid in understanding their spatiotemporal dynamics in real time, which inspires new ways to manipulate these systems for a variety of applications including synthetic biology and therapeutics. Current methods for sRNA imaging are quite limitedin vivoand do not provide real‐time information about fluctuations in sRNA levels. Herein, we describe our efforts toward the development of an RNA‐based fluorescent biosensor for bacterial sRNA bothin vitroandin vivo. We validated these sensors for three different bacterial sRNAs inEscherichia coliand demonstrated that the designs provide a bright, sequence‐specific signal output in response to exogenous and endogenous RNA targets.

     
    more » « less
  4. Summary

    3′,3′‐cyclic GMP‐AMP (cGAMP) is the third cyclic dinucleotide (CDN) to be discovered in bacteria. No activators of cGAMP signaling have yet been identified, and the signaling pathways for cGAMP have been inferred to display a narrow distribution based upon the characterized synthases, DncV and Hypr GGDEFs. Here, we report that the ubiquitous second messenger cyclic AMP (cAMP) is an activator of the Hypr GGDEF enzyme GacB fromMyxococcus xanthus. Furthermore, we show that GacB is inhibited directly by cyclic di‐GMP, which provides evidence for cross‐regulation between different CDN pathways. Finally, we reveal that the HD‐GYP enzyme PmxA is a cGAMP‐specific phosphodiesterase (GAP) that promotes resistance to osmotic stress inM. xanthus. A signature amino acid change in PmxA was found to reprogram substrate specificity and was applied to predict the presence of non‐canonical HD‐GYP phosphodiesterases in many bacterial species, including phyla previously not known to utilize cGAMP signaling.

     
    more » « less