Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
We present the TRIQS/Nevanlinna analytic continuation package, an efficient implementation of the methods proposed by J. Fei et al. (2021) [53] and (2021) [55]. TRIQS/Nevanlinna strives to provide a high quality open source (distributed under the GNU General Public License version 3) alternative to the more widely adopted Maximum Entropy based analytic continuation programs. With the additional Hardy functions optimization procedure, it allows for an accurate resolution of wide band and sharp features in the spectral function. Those problems can be formulated in terms of imaginary time or Matsubara frequency response functions. The application is based on the TRIQS C++/Python framework, which allows for easy interoperability with other TRIQS-based applications, electronic band structure codes and visualization tools. Similar to other TRIQS packages, it comes with a convenient Python interface.more » « less
-
Color centers in hexagonal boron nitride (hBN) are presently attracting broad interest as a novel platform for nanoscale sensing and quantum information processing. Unfortunately, their atomic structures remain largely elusive and only a small percentage of the emitters studied thus far have the properties required to serve as optically addressable spin qubits. Here, we use confocal fluorescence microscopy at variable temperatures to study a new class of point defects produced via cerium ion implantation in thin hBN flakes. We find that, to a significant fraction, emitters show bright room-temperature emission, and good optical stability suggesting the formation of Ce-based point defects. Using density functional theory (DFT) we calculate the emission properties of candidate emitters, and single out the CeVBcenter—formed by an interlayer Ce atom adjacent to a boron vacancy—as one possible microscopic model. Our results suggest an intriguing route to defect engineering that simultaneously exploits the singular properties of rare-earth ions and the versatility of two-dimensional material hosts.more » « less
An official website of the United States government
