skip to main content

Search for: All records

Creators/Authors contains: "Han, Bo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The emerging volumetric videos offer a fully immersive, six degrees of freedom (6DoF) viewing experience, at the cost of extremely high bandwidth demand. In this paper, we design, implement, and evaluate Vues, an edge-assisted transcoding system that delivers high-quality volumetric videos with low bandwidth requirement, low decoding overhead, and high quality of experience (QoE) on mobile devices. Through an IRB-approved user study, we build a f irst-of-its-kind QoE model to quantify the impact of various factors introduced by transcoding volumetric content into 2D videos. Motivated by the key observations from this user study, Vues employs a novel multiview approach withmore »the overarching goal of boosting QoE. The Vues edge server adaptively transcodes a volumetric video frame into multiple 2D views with the help of a few lightweight machine learning models and strategically balances the extra bandwidth consumption of additional views and the improved QoE, indicated by our QoE model. The client selects the view that optimizes the QoE among the delivered candidates for display. Comprehensive evaluations using a prototype implementation indicate that Vues dramatically outperforms existing approaches. On average, it improves the QoE by 35% (up to 85%), compared to single-view transcoding schemes, and reduces the bandwidth consumption by 95%, compared to the state-of-the-art that directly streams volumetric videos.« less
    Free, publicly-accessible full text available October 1, 2023
  2. Abstract Engineering the properties of quantum materials via strong light-matter coupling is a compelling research direction with a multiplicity of modern applications. Those range from modifying charge transport in organic molecules, steering particle correlation and interactions, and even controlling chemical reactions. Here, we study the modification of the material properties via strong coupling and demonstrate an effective inversion of the excitonic band-ordering in a monolayer of WSe 2 with spin-forbidden, optically dark ground state. In our experiments, we harness the strong light-matter coupling between cavity photon and the high energy, spin-allowed bright exciton, and thus creating two bright polaritonic modesmore »in the optical bandgap with the lower polariton mode pushed below the WSe 2 dark state. We demonstrate that in this regime the commonly observed luminescence quenching stemming from the fast relaxation to the dark ground state is prevented, which results in the brightening of this intrinsically dark material. We probe this effective brightening by temperature-dependent photoluminescence, and we find an excellent agreement with a theoretical model accounting for the inversion of the band ordering and phonon-assisted polariton relaxation.« less
    Free, publicly-accessible full text available December 1, 2023
  3. Free, publicly-accessible full text available June 17, 2023
  4. Free, publicly-accessible full text available April 29, 2023
  5. Free, publicly-accessible full text available May 1, 2023
  6. Free, publicly-accessible full text available March 9, 2023
  7. Free, publicly-accessible full text available January 1, 2023
  8. Free, publicly-accessible full text available January 1, 2023
  9. Free, publicly-accessible full text available November 4, 2022