Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Baeza-Yates, Ricardo ; Bonchi, Francesco (Ed.)Fine-grained entity typing (FET), which assigns entities in text with context-sensitive, fine-grained semantic types, is a basic but important task for knowledge extraction from unstructured text. FET has been studied extensively in natural language processing and typically relies on human-annotated corpora for training, which is costly and difficult to scale. Recent studies explore the utilization of pre-trained language models (PLMs) as a knowledge base to generate rich and context-aware weak supervision for FET. However, a PLM still requires direction and guidance to serve as a knowledge base as they often generate a mixture of rough and fine-grained types, or tokens unsuitable for typing. In this study, we vision that an ontology provides a semantics-rich, hierarchical structure, which will help select the best results generated by multiple PLM models and head words. Specifically, we propose a novel annotation-free, ontology-guided FET method, ONTOTYPE, which follows a type ontological structure, from coarse to fine, ensembles multiple PLM prompting results to generate a set of type candidates, and refines its type resolution, under the local context with a natural language inference model. Our experiments on the Ontonotes, FIGER, and NYT datasets using their associated ontological structures demonstrate that our method outperforms the state-of-the-art zero-shot fine-grained entity typing methods as well as a typical LLM method, ChatGPT. Our error analysis shows that refinement of the existing ontology structures will further improve fine-grained entity typing.more » « lessFree, publicly-accessible full text available August 24, 2025
-
Baeza-Yates, Ricardo ; Bonchi, Francesco (Ed.)Fine-grained entity typing (FET) is the task of identifying specific entity types at a fine-grained level for entity mentions based on their contextual information. Conventional methods for FET require extensive human annotation, which is time-consuming and costly given the massive scale of data. Recent studies have been developing weakly supervised or zero-shot approaches.We study the setting of zero-shot FET where only an ontology is provided. However, most existing ontology structures lack rich supporting information and even contain ambiguous relations, making them ineffective in guiding FET. Recently developed language models, though promising in various few-shot and zero-shot NLP tasks, may face challenges in zero-shot FET due to their lack of interaction with task-specific ontology. In this study, we propose OnEFET, where we (1) enrich each node in the ontology structure with two categories of extra information: instance information for training sample augmentation and topic information to relate types with contexts, and (2) develop a coarse-to-fine typing algorithm that exploits the enriched information by training an entailment model with contrasting topics and instance-based augmented training samples. Our experiments show that OnEFET achieves high-quality fine-grained entity typing without human annotation, outperforming existing zero-shot methods by a large margin and rivaling supervised methods. OnEFET also enjoys strong transferability to unseen and finer-grained types. Code is available at https://github.com/ozyyshr/OnEFET.more » « lessFree, publicly-accessible full text available August 24, 2025
-
Baeza-Yates, Ricardo ; Bonchi, Francesco (Ed.)Massive amount of unstructured text data are generated daily, ranging from news articles to scientific papers. How to mine structured knowledge from the text data remains a crucial research question. Recently, large language models (LLMs) have shed light on the text mining field with their superior text understanding and instructionfollowing ability. There are typically two ways of utilizing LLMs: fine-tune the LLMs with human-annotated training data, which is labor intensive and hard to scale; prompt the LLMs in a zero-shot or few-shot way, which cannot take advantage of the useful information in the massive text data. Therefore, it remains a challenge on automated mining of structured knowledge from massive text data in the era of large language models. In this tutorial, we cover the recent advancements in mining structured knowledge using language models with very weak supervision. We will introduce the following topics in this tutorial: (1) introduction to large language models, which serves as the foundation for recent text mining tasks, (2) ontology construction, which automatically enriches an ontology from a massive corpus, (3) weakly-supervised text classification in flat and hierarchical label space, (4) weakly-supervised information extraction, which extracts entity and relation structures.more » « lessFree, publicly-accessible full text available August 24, 2025
-
Chua, Tat-Seng ; Ngo, Chong-Wah ; Kumar, Ravi ; Lauw, Hady W ; Lee, Roy Ka-Wei (Ed.)Document retrieval has greatly benefited from the advancements of large-scale pre-trained language models (PLMs). However, their effectiveness is often limited in theme-specific applications for specialized areas or industries, due to unique terminologies, incomplete contexts of user queries, and specialized search intents. To capture the theme-specific information and improve retrieval, we propose to use a corpus topical taxonomy, which outlines the latent topic structure of the corpus while reflecting user-interested aspects. We introduce ToTER (Topical Taxonomy Enhanced Retrieval) framework, which identifies the central topics of queries and documents with the guidance of the taxonomy, and exploits their topical relatedness to supplement missing contexts. As a plug-and-play framework, ToTER can be flexibly employed to enhance various PLM-based retrievers. Through extensive quantitative, ablative, and exploratory experiments on two real-world datasets, we ascertain the benefits of using topical taxonomy for retrieval in theme-specific applications and demonstrate the effectiveness of ToTER.more » « lessFree, publicly-accessible full text available May 13, 2025
-
Wooldridge, Michael J ; Dy, Jennifer G ; Natarajan, Sriraam (Ed.)
Accurately typing entity mentions from text segments is a fundamental task for various natural language processing applications. Many previous approaches rely on massive human-annotated data to perform entity typing. Nevertheless, collecting such data in highly specialized science and engineering domains (e.g., software engineering and security) can be time-consuming and costly, without mentioning the domain gaps between training and inference data if the model needs to be applied to confidential datasets. In this paper, we study the task of seed-guided fine-grained entity typing in science and engineering domains, which takes the name and a few seed entities for each entity type as the only supervision and aims to classify new entity mentions into both seen and unseen types (i.e., those without seed entities). To solve this problem, we propose SEType which first enriches the weak supervision by finding more entities for each seen type from an unlabeled corpus using the contextualized representations of pre-trained language models. It then matches the enriched entities to unlabeled text to get pseudo-labeled samples and trains a textual entailment model that can make inferences for both seen and unseen types. Extensive experiments on two datasets covering four domains demonstrate the effectiveness of SEType in comparison with various baselines. Code and data are available at: https://github.com/yuzhimanhua/SEType.
Free, publicly-accessible full text available March 25, 2025 -
GenRES: Rethinking Evaluation for Generative Relation Extraction in the Era of Large Language ModelsDuh, Kevin ; G'omez-Adorno, Helena ; Bethard, Steven (Ed.)The field of relation extraction (RE) is experiencing a notable shift towards generative relation extraction (GRE), leveraging the capabilities of large language models (LLMs). However, we discovered that traditional relation extraction (RE) metrics like precision and recall fall short in evaluating GRE methods. This shortfall arises because these metrics rely on exact matching with human-annotated reference relations, while GRE methods often produce diverse and semantically accurate relations that differ from the references. To fill this gap, we introduce GENRES for a multidimensional assessment in terms of the topic similarity, uniqueness, granularity, factualness, and completeness of the GRE results. With GENRES, we empirically identified that (1) precision/recall fails to justify the performance of GRE methods; (2) human-annotated referential relations can be incomplete; (3) prompting LLMs with a fixed set of relations or entities can cause hallucinations. Next, we conducted a human evaluation of GRE methods that shows GENRES is consistent with human preferences for RE quality. Last, we made a comprehensive evaluation of fourteen leading LLMs using GENRES across document, bag, and sentence level RE datasets, respectively, to set the benchmark for future research in GRE.more » « lessFree, publicly-accessible full text available January 1, 2025
-
Duh, Kevin ; G'omez-Adorno, Helena ; Bethard, Steven (Ed.)The advent of large language models (LLMs) has significantly advanced natural language processing tasks like text summarization. However, their large size and computational demands, coupled with privacy concerns in data transmission, limit their use in resourceconstrained and privacy-centric settings. To overcome this, we introduce TriSum, a framework for distilling LLMs’ text summarization abilities into a compact, local model. Initially, LLMs extract a set of aspect-triple rationales and summaries, which are refined using a dualscoring method for quality. Next, a smaller local model is trained with these tasks, employing a curriculum learning strategy that evolves from simple to complex tasks. Our method enhances local model performance on various benchmarks (CNN/DailyMail, XSum, and ClinicalTrial), outperforming baselines by 4.5%, 8.5%, and 7.4%, respectively. It also improves interpretability by providing insights into the summarization rationale.more » « lessFree, publicly-accessible full text available January 1, 2025
-
Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich NetworksProc. 2023 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (Ed.)Representation learning on networks aims to derive a meaningful vector representation for each node, thereby facilitating downstream tasks such as link prediction, node classification, and node clustering. In heterogeneous text-rich networks, this task is more challenging due to (1) presence or absence of text: Some nodes are associated with rich textual information, while others are not; (2) diversity of types: Nodes and edges of multiple types form a heterogeneous network structure. As pretrained language models (PLMs) have demonstrated their effectiveness in obtaining widely generalizable text representations, a substantial amount of effort has been made to incorporate PLMs into representation learning on text-rich networks. However, few of them can jointly consider heterogeneous structure (network) information as well as rich textual semantic information of each node effectively. In this paper, we propose Heterformer, a Heterogeneous Network-Empowered Transformer that performs contextualized text encoding and heterogeneous structure encoding in a unified model. Specifically, we inject heterogeneous structure information into each Transformer layer when encoding node texts. Meanwhile, Heterformer is capable of characterizing node/edge type heterogeneity and encoding nodes with or without texts. We conduct comprehensive experiments on three tasks (i.e., link prediction, node classification, and node clustering) on three large-scale datasets from different domains, where Heterformer outperforms competitive baselines significantly and consistently.more » « less
-
Proc. 2023 ACM SIGIR Int. Conf. on Research and Development in Information Retrieval (Ed.)Unsupervised discovery of stories with correlated news articles in real-time helps people digest massive news streams without expensive human annotations. A common approach of the existing studies for unsupervised online story discovery is to represent news articles with symbolic- or graph-based embedding and incrementally cluster them into stories. Recent large language models are expected to improve the embedding further, but a straightforward adoption of the models by indiscriminately encoding all information in articles is ineffective to deal with text-rich and evolving news streams. In this work, we propose a novel thematic embedding with an off-the-shelf pretrained sentence encoder to dynamically represent articles and stories by considering their shared temporal themes. To realize the idea for unsupervised online story discovery, a scalable framework USTORY is introduced with two main techniques, theme- and time-aware dynamic embedding and novelty aware adaptive clustering, fueled by lightweight story summaries. A thorough evaluation with real news data sets demonstrates that USTORY achieves higher story discovery performances than baselines while being robust and scalable to various streaming settings.more » « less
-
Recent abstractive conversation summarization systems generally rely on large-scale datasets with annotated summaries. However, collecting and annotating these conversations can be a time-consuming and labor-intensive task. To address this issue, in this work, we present a sub-structure level compositional data augmentation method, COMPO, for generating diverse and high-quality pairs of conversations and summaries. Specifically, COMPO first extracts conversation structures like topic splits and action triples as basic units. Then we organize these semantically meaningful conversation snippets compositionally to create new training instances. Additionally, we explore noise-tolerant settings in both self-training and joint-training paradigms to make the most of these augmented samples. Our experiments on benchmark datasets, SAMSum and DialogSum, show that COMPO substantially outperforms prior baseline methods by achieving a nearly 10% increase of ROUGE scores with limited data.more » « less