skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hancock, S W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Low-density meter-scale plasma waveguides produced in meter-scale supersonic gas jets have paved the way for recent demonstrations of all-optical multi-gigaelectronvolt laser wakefield acceleration (LWFA). This paper reviews recent advances by the University of Maryland, which have enabled these results, focusing on the development of elongated supersonic gas jets up to ∼1 m in length, experimental and simulation studies of plasma waveguide formation, and a new three-stage model for relativistic pulse propagation dynamics in these waveguides. We also present results from recent LWFA experiments conducted at the Laboratory for Advanced Lasers and Extreme Photonics at Colorado State University demonstrating high charge, low divergence electron bunches to ∼10 GeV, with laser-to-electron beam efficiency of at least ∼30%. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Hydrodynamic plasma waveguides initiated by optical field ionization have recently become a key component of multi-GeV laser wakefield accelerators. Here, we present the most complete and accurate experimental and simulation-based characterization to date, applicable to current multi-GeV experiments and future 100 GeV-scale laser plasma accelerators. Crucial to the simulations is the correct modeling of intense Bessel beam interaction with meter-scale gas targets, the results of which are used as initial conditions for hydrodynamic simulations. The simulations are in good agreement with our experiments measuring evolving plasma and neutral hydrogen density profiles using two-color short pulse interferometry, enabling realistic determination of the guided mode structure for application to laser-driven plasma accelerator design. Published by the American Physical Society2024 
    more » « less