skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Handlin, Alexandra D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Amidyl radicals mediate a diverse array of intermolecular aliphatic C(sp3)–H and decarboxylative functionalizations. Interestingly, we have observed that decarboxylative processes proceed with excellent chemoselectivity even with substrates containing weak C(sp3)–H bonds. Herein, we report a mechanistic basis for understanding this high chemoselectivity of amidyl radicals through divergent reaction pathways. A computational assessment of the transition state SOMOs and intrinsic bonding orbitals for amidyl radical hydrogen atom transfer (HAT) and concerted proton-electron transfer (CPET) processes support a shift in mechanism between aliphatic C(sp3)–H or carboxylic acid O–H abstraction, which is supported by experimental studies. These findings provide a rationale for the chemoselectivity of decarboxylative reactions mediated by amidyl radicals. 
    more » « less
    Free, publicly-accessible full text available October 16, 2026