Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding and predicting the relationship between leaf temperature ( T leaf ) and air temperature ( T air ) is essential for projecting responses to a warming climate, as studies suggest that many forests are near thermal thresholds for carbon uptake. Based on leaf measurements, the limited leaf homeothermy hypothesis argues that daytime T leaf is maintained near photosynthetic temperature optima and below damaging temperature thresholds. Specifically, leaves should cool below T air at higher temperatures (i.e., > ∼25–30°C) leading to slopes <1 in T leaf / T air relationships and substantial carbon uptake when leaves are cooler than air. This hypothesis implies that climate warming will be mitigated by a compensatory leaf cooling response. A key uncertainty is understanding whether such thermoregulatory behavior occurs in natural forest canopies. We present an unprecedented set of growing season canopy-level leaf temperature ( T can ) data measured with thermal imaging at multiple well-instrumented forest sites in North and Central America. Our data do not support the limited homeothermy hypothesis: canopy leaves are warmer than air during most of the day and only cool below air in mid to late afternoon, leading to T can / T air slopes >1 and hysteretic behavior. We find that the majority of ecosystem photosynthesis occurs when canopy leaves are warmer than air. Using energy balance and physiological modeling, we show that key leaf traits influence leaf-air coupling and ultimately the T can / T air relationship. Canopy structure also plays an important role in T can dynamics. Future climate warming is likely to lead to even greater T can , with attendant impacts on forest carbon cycling and mortality risk.more » « less
-
Abstract Mechanistic representations of biogeochemical processes in ecosystem models are rapidly advancing, requiring advancements in model evaluation approaches. Here we quantify multiple aspects of model functional performance to evaluate improved process representations in ecosystem models. We compare semi‐empirical stomatal models with hydraulic constraints against more mechanistic representations of stomatal and hydraulic functioning at a semi‐arid pine site using a suite of metrics and analytical tools. We find that models generally perform similarly under unstressed conditions, but performance diverges under atmospheric and soil drought. The more empirical models better capture synergistic information flows between soil water potential and vapor pressure deficit to transpiration, while the more mechanistic models are overly deterministic. Although models can be parameterized to yield similar functional performance, alternate parameterizations could not overcome structural model constraints that underestimate the unique information contained in soil water potential about transpiration. Additionally, both multilayer canopy and big‐leaf models were unable to capture the magnitude of canopy temperature divergence from air temperature, and we demonstrate that errors in leaf temperature can propagate to considerable error in simulated transpiration. This study demonstrates the value of merging underutilized observational data streams with emerging analytical tools to characterize ecosystem function and discriminate among model process representations.