skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hanson, Erik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Grain boundaries can greatly affect the transport properties of polycrystalline materials, particularly when the grain size approaches the nanoscale. While grain boundaries often enhance diffusion by providing a fast pathway for chemical transport, some material systems, such as those of solid oxide fuel cells and battery cathode particles, exhibit the opposite behavior, where grain boundaries act to hinder diffusion. To facilitate the study of systems with hindered grain boundary diffusion, we propose a model that utilizes the smoothed boundary method to simulate the dynamic concentration evolution in polycrystalline systems. The model employs domain parameters with diffuse interfaces to describe the grains, thereby enabling solutions with explicit consideration of their complex geometries. The intrinsic error arising from the diffuse interface approach employed in our proposed model is explored by comparing the results against a sharp interface model for a variety of parameter sets. Finally, two case studies are considered to demonstrate potential applications of the model. First, a nanocrystalline yttria-stabilized zirconia solid oxide fuel cell system is investigated, and the effective diffusivities are extracted from the simulation results and are compared to the values obtained through mean-field approximations. Second, the concentration evolution during lithiation of a polycrystalline battery cathode particle is simulated to demonstrate the method’s capability.

     
    more » « less
  2. In many animals, the germline differentiates early in embryogenesis, so only mutations that accumulate in germ cells are inherited by offspring. Exceptions to this developmental process may indicate other mechanisms have evolved to limit the effects of deleterious mutation accumulation. Stony corals are animals that can live for hundreds of years and have been thought to produce gametes from somatic tissue. To clarify conflicting evidence about germline-soma distinction in corals, we sequenced high coverage, full genomes with technical replicates for parent coral branches and their sperm pools. We identified post-embryonic single nucleotide variants (SNVs) unique to each parent branch, then checked if each SNV was shared by the respective sperm pool. Twenty-six per cent of post-embryonic SNVs were shared by the sperm and 74% were not. We also identified germline SNVs, those that were present in the sperm but not in the parent. These data suggest that self-renewing stem cells differentiate into germ and soma throughout the adult life of the colony, with SNV rates and patterns differing markedly in stem, soma and germ lineages. In addition to informing the evolution of germlines in metazoans, these insights inform how corals may generate adaptive diversity necessary in the face of global climate change.

     
    more » « less