skip to main content

Search for: All records

Creators/Authors contains: "Hanson, Maureen R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The enzyme carbonic anhydrase (CA), which catalyzes the interconversion of bicarbonate with carbon dioxide (CO2) and water, has been hypothesized to play a role in C3photosynthesis. We identified two tobacco stromal CAs, β-CA1 and β-CA5, and produced CRISPR/Cas9 mutants affecting their encoding genes. While single knockout linesΔβ-ca1andΔβ-ca5had no striking phenotypic differences compared to wild type (WT) plants,Δβ-ca1ca5leaves developed abnormally and exhibited large necrotic lesions even when supplied with sucrose. Leaf development ofΔβ-ca1ca5plants normalized at 9,000 ppm CO2. Leaves ofΔβ-ca1ca5mutants and WT that had matured in high CO2had identical CO2fixation rates and photosystem II efficiency. Fatty acids, which are formed through reactions with bicarbonate substrates, exhibited abnormal profiles in the chloroplast CA-less mutant. EmergingΔβ-ca1ca5leaves produce reactive oxygen species in chloroplasts, perhaps due to lower nonphotochemical quenching efficiency compared to WT.Δβ-ca1ca5seedling germination and development is negatively affected at ambient CO2. Transgenes expressing full-length β-CA1 and β-CA5 proteins complemented theΔβ-ca1ca5mutation but inactivated (ΔZn-βCA1) and cytoplasm-localized (Δ62-βCA1) forms of β-CA1 did not reverse the growth phenotype. Nevertheless, expression of the inactivated ΔZn-βCA1 protein was able to restore the hypersensitive response to tobacco mosaic virus, whileΔβ-ca1andΔβ-ca1ca5plants failed to show a hypersensitive response. We conclude that stromal CA plays a role in plant development, likely through providing bicarbonate for biosynthetic reactions, but stromal CA is not needed for maximal rates of photosynthesis in the C3plant tobacco.

    more » « less
  2. null (Ed.)
  3. Abstract

    With increasing complexity of expression studies and the repertoire of characterized sequences, combinatorial cloning has become a common necessity. Techniques like BioBricks and Golden Gate aim to standardize and speed up the process of cloning large constructs while enabling sharing of resources. The BioBricks format provides a simplified and flexible approach to endless assembly with a compact library and useful intermediates but is a slow process, joining only two parts in a cycle. Golden Gate improves upon the speed with use of Type IIS enzymes and joins several parts in a cycle but requires a larger library of parts and logistical inefficiencies scale up significantly in the multigene format. We present here a method that provides improvement over these techniques by combining their features. By using Type IIS enzymes in a format like BioBricks, we have enabled a faster and efficient assembly with reduced scarring, which performs at a similarly fast pace as Golden Gate, but significantly reduces library size and user input. Additionally, this method enables faster assembly of operon-style constructs, a feature requiring extensive workaround in Golden Gate. Our format allows such inclusions resulting in faster and more efficient assembly.

    more » « less
  4. Abstract The RanBP2 zinc finger (Znf) domain is a prevalent domain that mediates protein interaction and RNA binding. In Arabidopsis, a clade of four RanBP2 Znf-containing proteins, named the Organelle Zinc (OZ) finger family, are known or predicted to be targeted to either the mitochondria or the plastids. Previously we reported that OZ1 is absolutely required for the editing of 14 sites in chloroplasts. We now have investigated the function of OZ2, whose null mutation is embryo lethal. We rescued the null mutant by expressing wild-type OZ2 under the control of the seed-specific ABSCISIC ACID-INSENSITIVE3 (ABI3) promoter. Rescued mutant plants exhibit severely delayed development and a distinctive morphological phenotype. Genetic and biochemical analyses demonstrated that OZ2 promotes the splicing of transcripts of several mitochondrial nad genes and rps3. The splicing defect of nad transcripts results in the destabilization of complex I, which in turn affects the respiratory ability of oz2 mutants, turning on the alternative respiratory pathway, and impacting the plant development. Protein-protein interaction assays demonstrated binding of OZ2 to several known mitochondrial splicing factors targeting the same splicing events. These findings extend the known functional repertoire of the RanBP2 zinc finger domain in nuclear splicing to include plant organelle splicing. 
    more » « less
  5. Rubisco catalyses the first step in carbon fixation and is a strategic target to improve photosynthetic efficiency. In plants, Rubisco is composed of eight large and eight small subunits and its biogenesis requires multiple chaperones. We optimised a system to produce tobacco Rubisco in Escherichia coli by co-expressing chaperones in auto-induction medium. We successfully assembled tobacco Rubisco in E. coli with each small subunit that is normally encoded by the nuclear genome. Even though each enzyme carries only a single type of small subunit in E. coli, the enzymes exhibit carboxylation kinetics very similar to that of the native Rubisco. Tobacco Rubisco assembled with a recently discovered trichome small subunit has a higher catalytic rate and a lower CO2 affinity than those assembled with other small subunits. Our E. coli expression system will allow probing of features of both subunits of Rubisco that affect its kinetic properties. 
    more » « less
  6. OZ1, an RNA editing factor that controls the editing of 14 cytidine targets in Arabidopsis chloroplasts, contains two RanBP2-type zinc finger (Znf) domains. The RanBP2 Znf is a C4-type member of the broader zinc finger family with unique functions and an unusually diverse distribution in plants. The domain can mediate interactions with proteins or RNA and appears in protein types such as proteases, RNA editing factors, and chromatin modifiers; however, few characterized Arabidopsis proteins containing RanBP2 Znfs have been studied specifically with the domain in mind. In humans, RanBP2 Znf-containing proteins are involved in RNA splicing, transport, or transcription initiation. We present a phylogenetic overview of Arabidopsis RanBP2 Znf proteins and the functional niches that these proteins occupy in plants. OZ1 and its four-member family represent a branch of this family with major impact on the RNA biology of chloroplasts and mitochondria in Arabidopsis. We discuss what is known about other plant proteins carrying the RanBP2 Znf domain and point out how phylogenetic information can provide clues to functions of uncharacterized Znf proteins. 
    more » « less

    Photosynthetic inefficiencies limit the productivity and sustainability of crop production and the resilience of agriculture to future societal and environmental challenges. Rubisco is a key target for improvement as it plays a central role in carbon fixation during photosynthesis and is remarkably inefficient. Introduction of mutations to the chloroplast‐encoded Rubisco large subunitrbcL is of particular interest for improving the catalytic activity and efficiency of the enzyme. However, manipulation ofrbcL is hampered by its location in the plastome, with many species recalcitrant to plastome transformation, and by the plastid's efficient repair system, which can prevent effective maintenance of mutations introduced with homologous recombination. Here we present a system where the introduction of a number of silent mutations intorbcL within the model plantNicotiana tabacumfacilitates simplified screening via additional restriction enzyme sites. This system was used to successfully generate a range of transplastomic lines from wild‐typeN. tabacumwith stable point mutations withinrbcL in 40% of the transformants, allowing assessment of the effect of these mutations on Rubisco assembly and activity. With further optimization the approach offers a viable way forward for mutagenic testing of Rubisco functionin plantawithin tobacco and modification ofrbcL in other crops where chloroplast transformation is feasible. The transformation strategy could also be applied to introduce point mutations in other chloroplast‐encoded genes.

    more » « less