- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Hao, Sida (1)
-
Huang, Rui (1)
-
Suo, Zhigang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
For a thin layer of elastomer sandwiched between two rigid blocks, when the blocks are pulled, numerous cavities grow in the elastomer like cracks. Why does the elastomer grow numerous small cracks instead of a single large crack? Here we answer this question by analyzing an idealized model, in which the elastomer is an incompressible neoHookean material and contains a penny-shaped crack. To simulate one representative crack among many, the model is axisymmetric with zero radial displacement at the edge. When the rigid blocks are pulled by a pair of forces, a hydrostatic tension develops in the elastomer. At a critical hydrostatic tension, a small crack deforms substantially, as predicted by an elastic instability, resulting in an unbounded energy release rate. Consequently, the small crack initiates its growth, regardless of the toughness of the elastomer. As the crack grows, the energy release rate decreases, so that the crack arrests. Meanwhile, the rigid blocks constrain deformation of the elastomer far away from the crack, where hydrostatic tension remains high, allowing other cracks to grow. For an elastomer of thickness H, shear modulus , and toughness , the crack radius and spacing decrease as the normalized toughness increases. Therefore, a tough elastomer of small modulus and thickness will grow numerous small cracks when confined by two rigid blocks and pulled beyond a critical force.more » « less
An official website of the United States government
