Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we explore pattern formation in a four-species variational Gary-Scott model, which includes all reverse reactions and introduces a virtual species to describe the birth–death process in the classical Gray-Scott model. This modification transforms the classical Gray-Scott model into a thermodynamically consistent closed system. The classical two-species Gray-Scott model can be viewed as a subsystem of the variational model in the limiting case when the small parameter ε, related to the reaction rate of the reverse reactions, approaches zero. We numerically explore pattern formation in this physically more complete Gray-Scott model in one spatial dimension, using non-uniform steady states of the classical model as initial conditions. By decreasing ε, we observed that the stationary patterns in the classical Gray-Scott model can be stabilized as the transient states in the variational model for a significantly small ε. Additionally, the variational model admits oscillating and traveling wave-like patterns for small ε. The persistent time of these patterns is on the order of O(1/ε). We also analyze the energy stability of two uniform steady states in the variational Gary-Scott model for fixed. Although both states are stable in a certain sense, the gradient flow type dynamics of the variational model exhibit a selection effect based on the initial conditions, with pattern formation occurring only if the initial condition does not converge to the boundary steady state, which corresponds to the trivial uniform steady state in the classical Gray-Scott model.more » « lessFree, publicly-accessible full text available April 30, 2026
-
Abstract In this paper, we introduce a quasi-Newton method optimized for efficiently solving quasi-linear elliptic equations and systems, with a specific focus on GPU-based computation. By approximating the Jacobian matrix with a combination of linear Laplacian and simplified nonlinear terms, our method reduces the computational overhead typical of traditional Newton methods while handling the large, sparse matrices generated from discretized PDEs. We also provide a convergence analysis demonstrating local convergence to the exact solution under optimal choices for the regularization parameter, ensuring stability and efficiency in each iteration. Numerical experiments in two- and three-dimensional domains validate the proposed method’s robustness and computational gains with tensor product implementation. This approach offers a promising pathway for accelerating quasi-linear elliptic equations and systems solvers, expanding the feasibility of complex simulations in physics, engineering, and other fields leveraging advanced hardware capabilities.more » « less
-
Free, publicly-accessible full text available January 1, 2026
An official website of the United States government
