Data preservation is a mandatory specification for any present and future experimental facility and it is a cost-effective way of doing fundamental research by exploiting unique data sets in the light of the continuously increasing theoretical understanding. This document summarizes the status of data preservation in high energy physics. The paradigms and the methodological advances are discussed from a perspective of more than ten years of experience with a structured effort at international level. The status and the scientific return related to the preservation of data accumulated at large collider experiments are presented, together with an account of ongoing efforts to ensure long-term analysis capabilities for ongoing and future experiments. Transverse projects aimed at generic solutions, most of which are specifically inspired by open science and FAIR principles, are presented as well. A prospective and an action plan are also indicated.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
We report a search for a heavy neutral lepton (HNL) that mixes predominantly with. The search utilizes data collected with the Belle detector at the KEKB asymmetric energycollider. The data sample was collected at and just below the center-of-mass energies of theandresonances and has an integrated luminosity of, corresponding toevents. We search for production of the HNL (denoted) in the decayfollowed by its decay via. The search focuses on the parameter-space region in which the HNL is long-lived, so that theoriginate from a common vertex that is significantly displaced from the collision point of the KEKB beams. Consistent with the expected background yield, one event is observed in the data sample after application of all the event-selection criteria. We report limits on the mixing parameter of the HNL with theneutrino as a function of the HNL mass.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025 -
We measure the branching fraction of the decayusing data collected with the Belle II detector. The data contain 387 millionpairs produced incollisions at theresonance. We reconstructdecays from an analysis of the distributions of theenergy and thehelicity angle. We determine the branching fraction to be, in agreement with previous results. Our measurement improves the relative precision of the world average by more than a factor of two.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025 -
We report on a search for a resonancedecaying to a pair of muons inevents in themass range, usingof data collected by the Belle II experiment at the SuperKEKB collider at a center of mass energy of 10.58 GeV. The analysis probes two different models ofbeyond the standard model: avector boson in themodel and a muonphilic scalar. We observe no evidence for a signal and set exclusion limits at the 90% confidence level on the products of cross section and branching fraction for these processes, ranging from 0.046 fb to 0.97 fb for themodel and from 0.055 fb to 1.3 fb for the muonphilic scalar model. For masses below, the corresponding constraints on the couplings of these processes to the standard model range from 0.0008 to 0.039 for themodel and from 0.0018 to 0.040 for the muonphilic scalar model. These are the first constraints on the muonphilic scalar from a dedicated search.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025 -
We report a measurement of decay-time-dependent charge-parity () asymmetries indecays. We usepairs collected at theresonance with the Belle II detector at the SuperKEKB asymmetric-energy electron-positron collider. We reconstruct 220 signal events and extract the-violating parametersandfrom a fit to the distribution of the decay-time difference between the twomesons. The resulting confidence region is consistent with previous measurements inanddecays and with predictions based on the standard model.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025 -
We search for the rare decayin asample of electron-positron collisions at theresonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanyingmeson inevents to suppress background from other decays of the signalcandidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanyingmeson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for thebranching fraction ofand, respectively. Combining the results, we determine the branching fraction of the decayto be, providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025 -
We measure the tau-to-light-lepton ratio of inclusive-meson branching fractions, whereindicates an electron or muon, and thereby test the universality of charged-current weak interactions. We select events that have one fully reconstructedmeson and a charged lepton candidate fromof electron-positron collision data collected with the Belle II detector. We find, in agreement with standard-model expectations. This is the first direct measurement of.
Published by the American Physical Society 2024 Free, publicly-accessible full text available May 1, 2025